Non-parametric inferential statistical testing with clusters

Robert Oostenveld

Donders Institute, Radboud University, Nijmegen, NL
NatMEG, Karolinska Institute, Stockholm, SE

Talk outline

Inferential statistics
Channel-level statistics
parametric
non-parametric
clustering
Source-level statistics

What types of statistics do we have?

"Data don't make any sense,
we will have to resort to statistics."
How do large distributions of "something" behave?
Binomial, Normal, Poisson
How can I describe (or summarize) a distribution?
Mean, standard deviation, variance, kurtosis
How can I make a decision or draw a conclusion?
Inferential statistics, hypothesis testing

Inferential parametric statistics

You make N observation and want to find whether some hypothesis "H1" holds

Step 1: Gathering data

Inferentia parametric statistics

You make N observation and want to find whether some hypothesis "H1" holds
Step 2: Statistical testing

N	2.4

Determine probability of t under " HO " $\quad t=\frac{\mu-\mu_{H 0}}{\sigma / \sqrt{N}}$
If the observed t sufficiently unlikely, reject H 0 in favour of H 1

Inferential parametric statistics

Observations Observations
 in condition 1: in condition 2:
 $$
\{x 1, x 2, x 3, x 4, \ldots\} \quad\{y 1, y 2, y 3, y 4, \ldots\}
$$

Parametric statistical testing

You make N observation and want to find whether some hypothesis H 1 is true.

The first problem is that this requires a known distribution of the test statistic.

The second problem is that of multiple comparisons

16 *30 time-frequency tiles, i.e. 480 comparisons.
t-test with $\alpha=0.05$ (chance of false alarm rate) for one test
99.99...\% chance of at least one false alarm in 480 tests
$80 * 0.05=24$ false alarms expected

The multiple comparison problem

Whole-brain analysis

306 channels
100 timepoints
50 frequencies
1.530.000 statistical tests
5% chance of false alarm for every test
76.500 false alarms

Solutions to control the FWER

Bonferroni correction
Use the false discovery rate
Use a Monte Carlo approximation of the randomization distribution of the maximum statistic

```
cfg = [];
cfg.method = 'analytic'
cfg.correctm = 'bonferroni'
ERPstats = ft_timelockstatistics(cfg, ERP);
```

```
cfg = [];
cfg.method = 'analytic'
cfg.correctm = 'fdr'
ERPstats = ft_timelockstatistics(cfg, ERP);
```

```
cfg = [];
cfg.method = 'montecarlo'
cfg.correctm = 'max'
TFRstats = ft_freqstatistics(cfg, TFR);
```

- Independent variable: condition
- Dependent variable: data

HO: the data is independent from the condition in which it was observed

The data in the two conditions is not different

Randomization approach

Randomization approach

Randomization approach

Randomization approach

Distribution of " x " can take any shape

Non-parametric statistics

Randomization of independent variable
Hypothesis is about data, not about the specific parameter
The distribution of the statistic of interest " x " is approximated using the Monte-Carlo approach, i.e. by random sampling

HO is tested by comparing the observed statistic against the randomization distribution

The statistic "x" can be anything
Rather than testing everything, only test the most extreme observation (i.e. the max statistic)

Compute the randomization distribution for the most extreme statistic over all channels/times/frequencies
Note that often we compute two extrema, one for each tail

Increasing the sensitivity

Conventional is univariate parametric
Our approach is to consider the data
Many channels, timepoints, frequencies
Massive univariate
Multiple comparison problem

There is quite some structure in the data
channel/time/frequency points are not independent
neighbouring channel/time/frequency points are expected to show similar behaviour
combine neighbouring samples into clusters ->
"accumulate the evidence" = cluster-based statistics
avoid the MCP by comparing the Targest bbserved cluster versus the randomization distriby/tion of the largest clusters

Clustering in time

Clustering in time and frequency

Clustering in time, frequency and space

Toy example

Toy example: Original observation

null hypothesis: condition $\mathrm{A}=$ condition B

Condition A
S1_a
S2_a
S3_a
S4_a
S5_a
S6_a
S7_a
S8_a
S9_a
S10_a

Condition B
S1_b
S2_b
S3_b
S4_b
S5_b
S6_b
S7_b
S8_b
S9_b
S10_b

Toy example: $1^{\text {st }}$ permutation

null hypothesis: condition $\mathrm{A}=$ condition B

Condition A
S1_a
S2_b
S3_a
S4_a
S5_b
S6 b
S7_a
S8_a
S9_a
S10_b

Condition B
S1_b
S2_a
S3_b
S4_b
S5_a
S6_a
S7_b
S8_b
S9_b
S10_a

Toy example: $2^{\text {nd }}$ permutation

null hypothesis: condition $\mathrm{A}=$ condition B

Condition A
Condition B

Toy example: Original observation

Toy example: $1^{\text {st }}$ permutation

statistic $=13$
Observation

Toy example: $1^{\text {st }}$ permutation

Toy example: $2^{\text {nd }}$ permutation

Toy example: $3^{\text {rd }}$ permutation

Toy example: N^{th} permutation

Assess the likelihood of the observed max cluster size given the randomization distribution

Summary: channel-level

Parametric statistical test for all channel-time-frequency points probability for HO
one HO for each channel-time-frequency
multiple comparison problem

Non-parametric approach for estimating probability
randomization or permutation
probability of HO for arbitrary statistic
incorporate prior knowledge in statistic
avoid MCP using max statistic

Source-level statistics

Same principles as channel-level statistics

Beamforming

Swap data between conditions: use common filters

Inferential statistics:
 parametric

$$
x 1, x 2, x 3, x 4, \ldots \quad x 1, x 2, x 3, x 4, \ldots
$$

Inferential statistics: distributed data at source level

Inferential statistics:
 parametric

$$
[x 1, \times 2, \times 3, \times 4, \ldots \quad x 1, \times 2, x 3, x 4, \ldots \quad] \longrightarrow \text { t-statistic }
$$

Inferential statistics:
permutation approach

"s" statistic

Permutation distribution of " s " can take any shape

Cluster-based permutation test on source-level

a-priori threshold
cluster neighbouring voxels compute sum over cluster

Returning to beamforming

Common filters for beamforming

$$
\begin{aligned}
& M(t)=G X(t)+N \\
& \hat{X}(t)=W M(t) \quad W=\left(G^{\top} C^{-1} G\right)^{-1} G^{\top} C^{-1} \\
& P=\hat{X} \hat{X}^{\top}=W C W^{\top} \quad C=M M^{\top} \\
& C_{i}=M_{i} M_{i}^{\top} \text { trial } 1,2,3, \ldots \\
& C=\left(C_{1}+C_{2}+C_{3}+\ldots\right) / n \\
& P_{i}=W C_{i} W^{\top}
\end{aligned}
$$

Common filters for beamforming

H0: same distribution

Summary: source-level

Same principles as for channel-level statistics
Average covariance over all data for spatial filter estimate
One spatial filter per voxel
common to both conditions
single-trial estimates: simple multiplication
Permutation test not affected
exchangeability of data over conditions does not change the optimal filter under H0
computationally fast

General summary

A formal hypothesis can be tested with randomization test control the chance of false positives reduce the false negative rate

Multiple comparison problem one hypothesis per channel-time-frequency one hypothesis for all data

Increase sensitivity
using clusters to capture the structure in the data

