

Non-parametric inferential statistical testing with clusters

Robert Oostenveld

Donders Institute, Radboud University, Nijmegen, NL NatMEG, Karolinska Institute, Stockholm, SE

Talk outline

Inferential statistics

Channel-level statistics

parametric

non-parametric

clustering

Source-level statistics

What types of statistics do we have?

"Data don't make any sense, we will have to resort to statistics."

How do large distributions of "something" behave? Binomial, Normal, Poisson
How can I describe (or summarize) a distribution? Mean, standard deviation, variance, kurtosis
How can I make a decision or draw a conclusion? Inferential statistics, hypothesis testing Inferential parametric statistics

You make N observation and want to find whether some hypothesis "H1" holds

Step 1: Gathering data

Inferential parametric statistics

Determine probability of *t* under "H0"

 $t = \frac{\mu - \mu_{H0}}{\sigma / \sqrt{N}}$

If the observed t sufficiently unlikely, reject H0 in favour of H1

Inferential parametric statistics

Parametric statistical testing

You make N observation and want to find whether some hypothesis H1 is true.

The first problem is that this requires a *known distribution* of the test statistic.

The second problem is that of multiple comparisons

16 *30 time-frequency tiles, i.e. 480 comparisons.

t-test with α = 0.05 (chance of false alarm rate) for one test

99.99...% chance of at least one false alarm in 480 tests

80*0.05 = 24 false alarms expected

The multiple comparison problem

Whole-brain analysis

306 channels

100 timepoints

50 frequencies

1.530.000 statistical tests

5% chance of false alarm for every test

76.500 false alarms

Solutions to control the FWER

Bonferroni correction

Use the false discovery rate

Use a Monte Carlo approximation of the randomization distribution of the maximum statistic

Randomization test: general principle

- Independent variable: condition
- Dependent variable: data

H0: the data is **independent** from the condition in which it was observed

The data in the two conditions is **not** different

Distribution of "x" can take any shape

Randomization of independent variable

Hypothesis is about data, not about the specific parameter

The distribution of the statistic of interest "x" is approximated using the Monte-Carlo approach, i.e. by random sampling

H0 is tested by comparing the observed statistic against the randomization distribution

Avoid the multiple comparison problem

The statistic "x" can be anything

Rather than testing everything, only test the most extreme observation (i.e. the max statistic)

Compute the randomization distribution for the most extreme statistic over all channels/times/frequencies

Note that often we compute **two** extrema, one for each tail

Increasing the sensitivity

Conventional is univariate parametric Our approach is to consider the data Many channels, timepoints, frequencies Massive univariate Multiple comparison problem

There is quite some structure in the data

channel/time/frequency points are not independent

neighbouring channel/time/frequency points are expected to show similar behaviour

combine neighbouring samples into clusters -> "accumulate the evidence" = cluster-based statistics

avoid the MCP by comparing the largest observed cluster versus the randomization distribution of the largest clusters

Avoid multiple comparisons

Increase sensitivity

Clustering in time

Clustering in time and frequency

Clustering in time, frequency and space

Toy example

Toy example: Original observation

null hypothesis: condition A = condition B

Condition A	Condition B
S1_a	S1_b
S2_a	S2_b
S3_a	S3_b
S4_a	S4_b
S5_a	S5_b
S6_a	S6_b
S7_a	S7_b
S8_a	S8_b
S9_a	S9_b
S10_a	S10_b

Toy example: 1st permutation

null hypothesis: condition A = condition B

Toy example: 2nd permutation

null hypothesis: condition A = condition B

Toy example: Original observation

Toy example: 1st permutation

Toy example: 1st permutation

Toy example: 2nd permutation

Toy example: 3rd permutation

Toy example: Nth permutation

Assess the likelihood of the *observed max cluster size* given the randomization distribution

Summary: channel-level

Parametric statistical test for all channel-time-frequency points probability for H0 one H0 for each channel-time-frequency multiple comparison problem

Non-parametric approach for estimating probability randomization or permutation probability of H0 for arbitrary statistic incorporate prior knowledge in statistic avoid MCP using max statistic

Source-level statistics

Same principles as channel-level statistics

Beamforming

Swap data between conditions: use common filters

Inferential statistics: parametric

http://www.fieldtriptoolbox.org

Inferential statistics: distributed data at source level

Inferential statistics: parametric

Inferential statistics: permutation approach

Permutation distribution of "s" can take any shape

Cluster-based permutation test on source-level

a-priori threshold cluster neighbouring voxels compute sum over cluster

Returning to beamforming

http://www.fieldtriptoolbox.org

Common filters for beamforming

$$M(t) = G X(t) + N$$

$$\hat{X}(t) = W M(t) \qquad W = (G^{T} C^{-1} G)^{-1} G^{T} C^{-1}$$

$$P = \hat{X} \hat{X}^{T} = W C W^{T} \qquad C = M M^{T}$$

$$C_{i} = M_{i} M_{i}^{T} \text{ trial } 1, 2, 3, ...$$

$$C = (C_{1} + C_{2} + C_{3} + ...)/n$$

$$P_{i} = W C_{i} W^{T}$$

Common filters for beamforming

Summary: source-level

Same principles as for channel-level statistics

Average covariance over all data for spatial filter estimate

One spatial filter per voxel

common to both conditions

single-trial estimates: simple multiplication

Permutation test not affected

exchangeability of data over conditions does not change the optimal filter under H0 computationally fast

General summary

A formal hypothesis can be tested with randomization test control the chance of false positives reduce the false negative rate

Multiple comparison problem

one hypothesis per channel-time-frequency

one hypothesis for all data

Increase sensitivity

using clusters to capture the structure in the data

http://www.fieldtriptoolbox.org