

Radboud University

Fundamentals of neuronal oscillations and synchrony

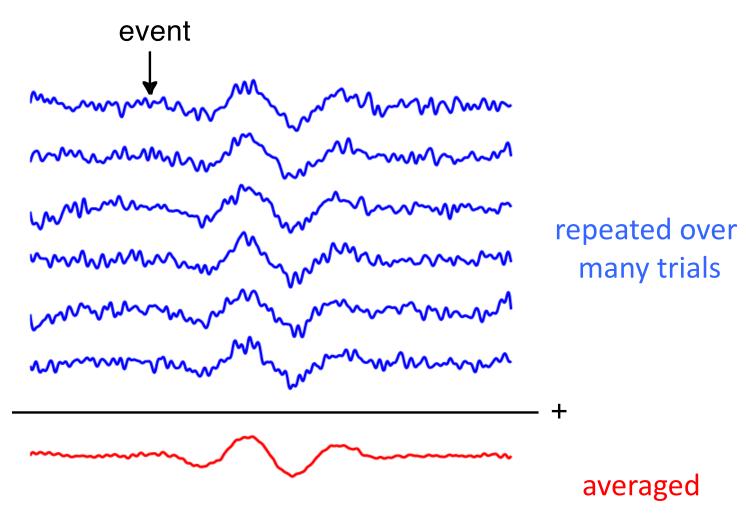
Jan Mathijs Schoffelen, MD PhD

j.schoffelen@donders.ru.nl

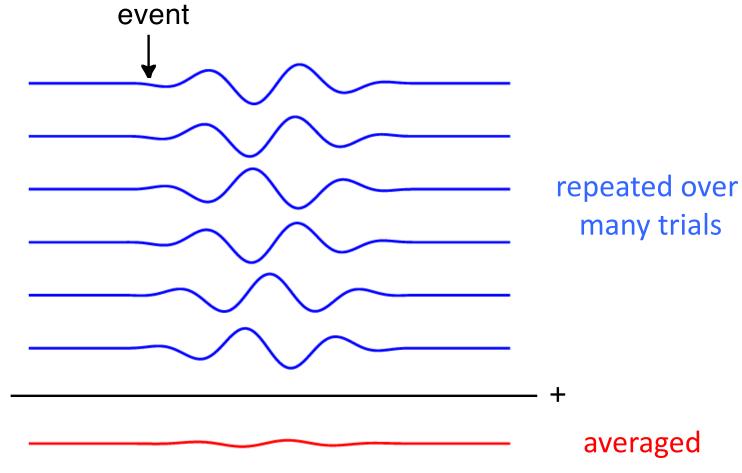
Donders Institute, Radboud University, Nijmegen, NL

Let's recap evoked activity

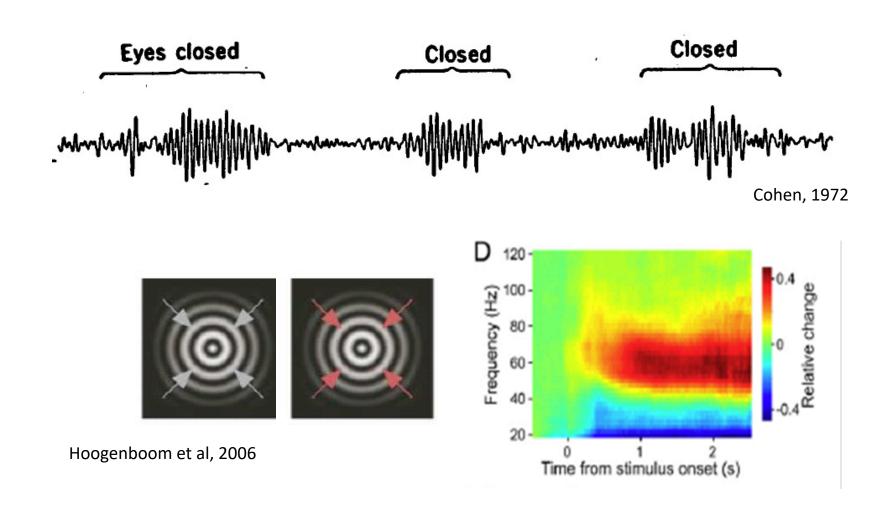
Let's recap evoked activity



What now?



Or what if the brain signal contains oscillatory components?



M/EEG signal characteristics considered during analysis

timecourse of activity

-> ERP

spectral characteristics

-> power spectrum

temporal changes in power

-> time-frequency response (TFR)

spatial distribution of activity over the head

-> source reconstruction

Outline

Spectral analysis: going from time to frequency domain

Spectral leakage and (multi-)tapering

Time-frequency analysis

Outline

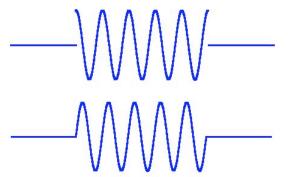
Spectral analysis: going from time to frequency domain

Spectral leakage and (multi-)tapering

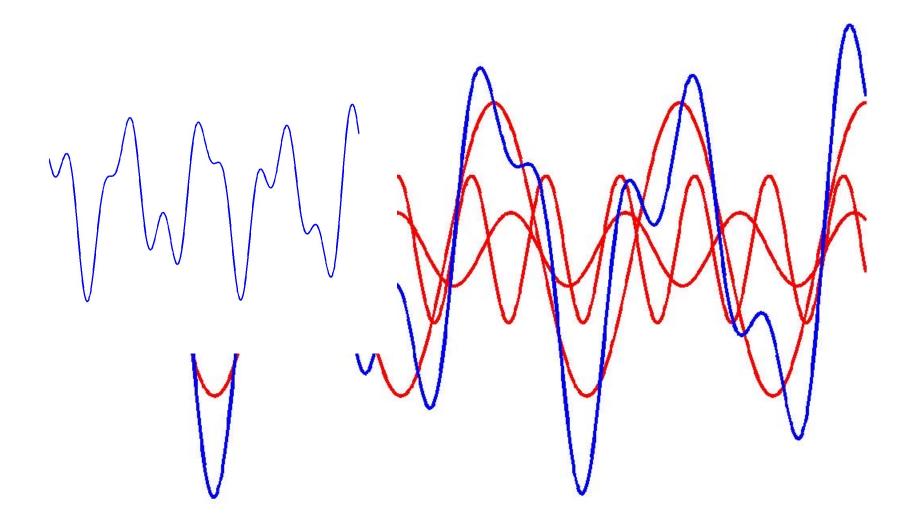
Time-frequency analysis

Spectral analysis

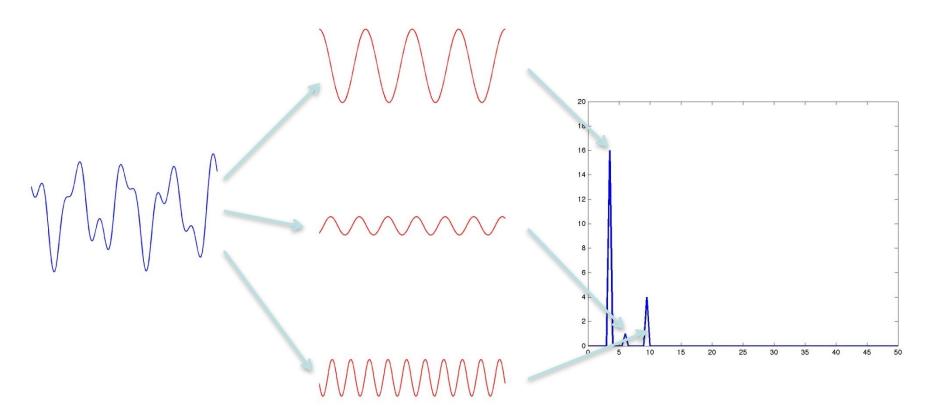
Deconstructing a time domain signal into its constituent oscillatory components, a.k.a. Fourier analysis
Using simple oscillatory functions: cosines and sines



Spectral decomposition: the principle



Spectral decomposition: the power spectrum



Spectral analysis

Deconstructing a time domain signal into its constituent oscillatory components, a.k.a. Fourier analysis
Using simple oscillatory functions: cosines and sines
Express signal as function of frequency, rather than time

Technique: Fourier transform

Concept: linear regression using oscillatory basis functions

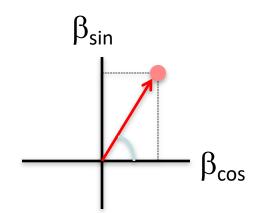
Spectral analysis ~ GLM

$$Y = \beta * X$$

X set of (orthogonal) basis functions

 β_i contribution of basis function i to the data.

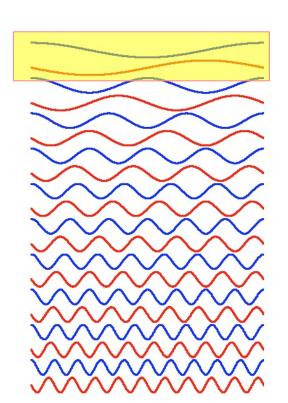
 β for cosine and sine components for a given frequency map onto amplitude and phase estimate.



Going from N time points to N cosine/sine components

Each cosine/sine pair reflects 1 frequency bin so ~N/2 frequencies can be estimated

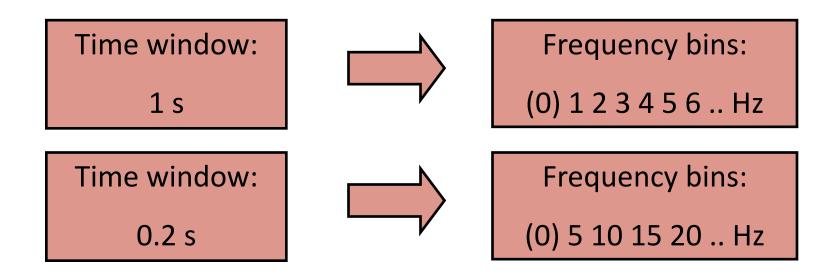
Frequencies correspond to integer number of cycles of basis functions in time window



Time-frequency relation

Frequencies correspond to basis functions with integer number of cycles in time window (T), sampled in N discrete time steps of length Δt (i.e. with sampling frequency 1/ Δt)

Rayleigh frequency = $1/T = \Delta f$ = frequency resolution



Time-frequency relation

N basis functions -> N/2 frequencies

Frequency bins are spaced with $1/T = 1/(N*\Delta t)$

The highest frequency that can be resolved thus depends on the sampling frequency $1/\Delta t$

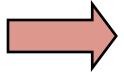
Nyquist frequency = $1/(2*\Delta t)$

Sampling freq 1 kHz

Time window 1 s

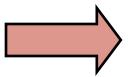
Sampling freq 400 Hz

Time window 0.25 s



Frequencies:

(0) 1 2 ... 499 500 Hz



Frequencies:

(0) 48... 196 200 Hz

Spectral analysis

Deconstructing a time domain signal into its constituent oscillatory components, a.k.a. Fourier analysis
Using simple oscillatory functions: cosines and sines
Express signal as function of frequency, rather than time

Technique: Fourier transform

Concept: linear regression using oscillatory basis functions Each oscillatory component has an amplitude and phase Discrete and finite sampling constrains the frequency bins -> spectral leakage

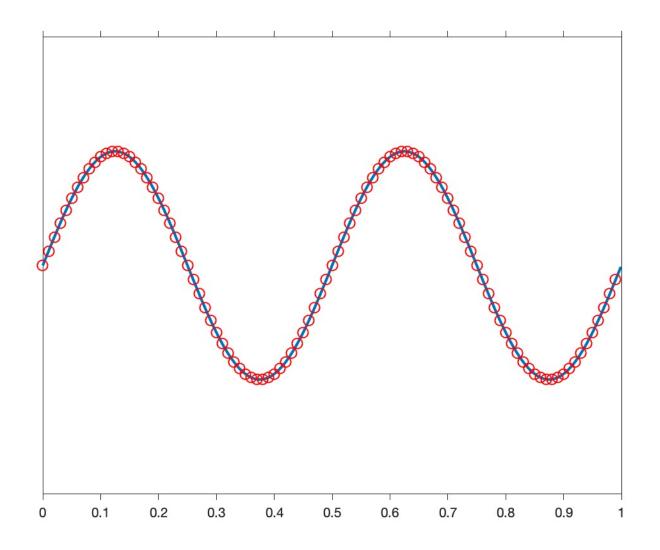
Outline

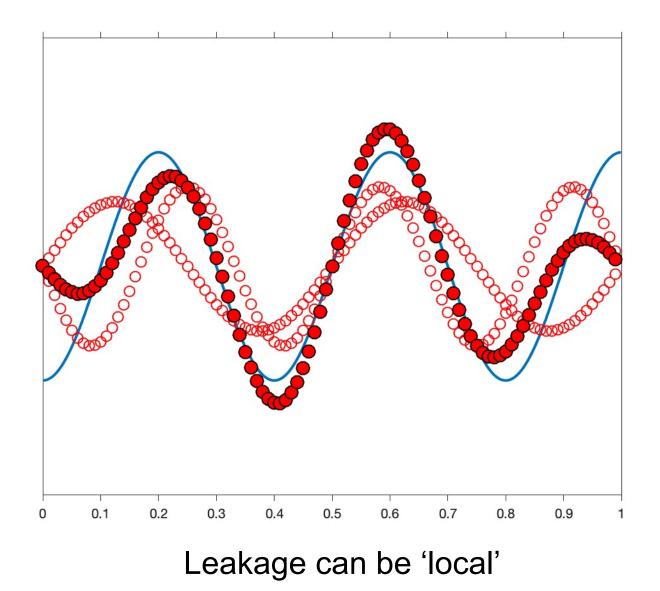
Spectral analysis: going from time to frequency domain

Spectral leakage and (multi-)tapering

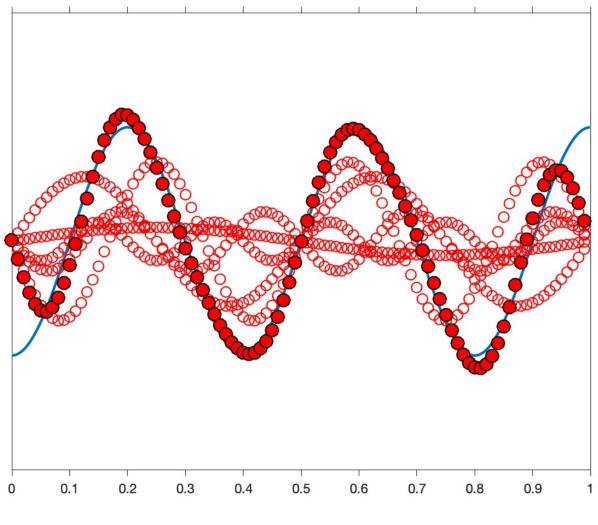
Time-frequency analysis

 Signal components at frequencies not sampled with Fourier transform spread their energy to the sampled frequencies

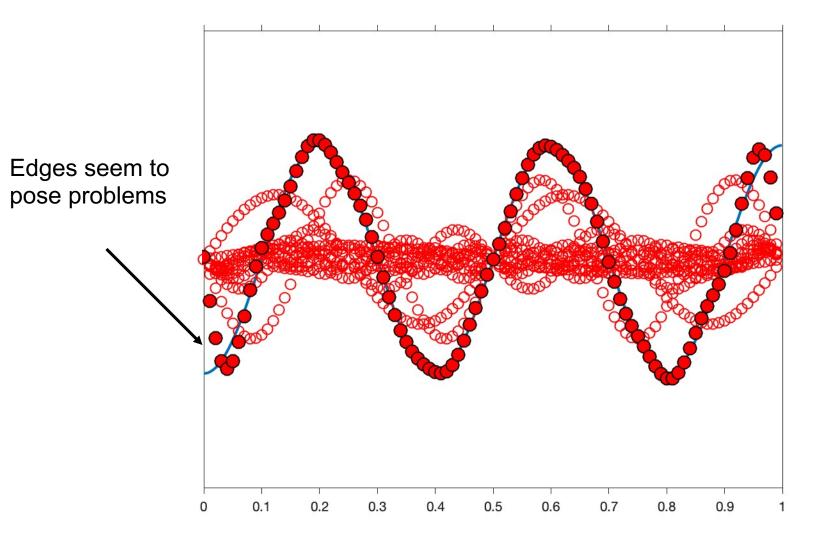




20

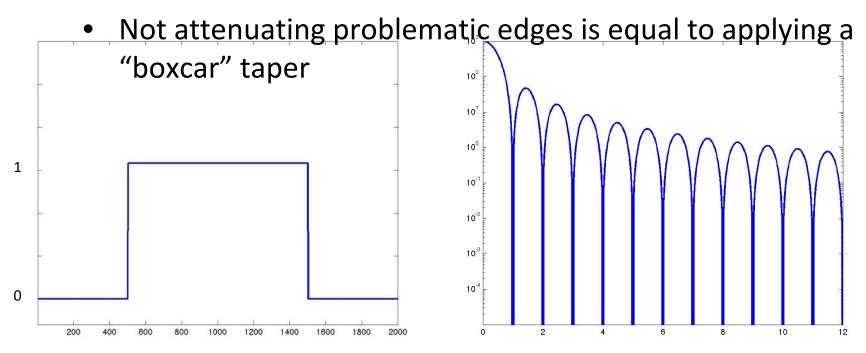


Leakage is also 'distant'

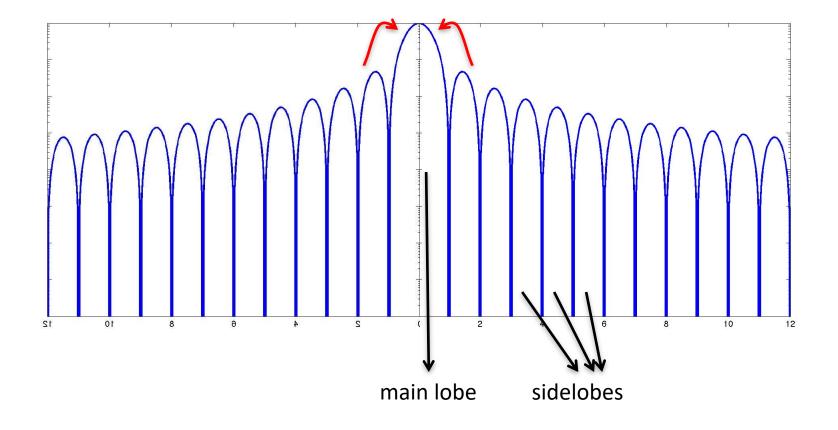


Spectral leakage in the frequency domain

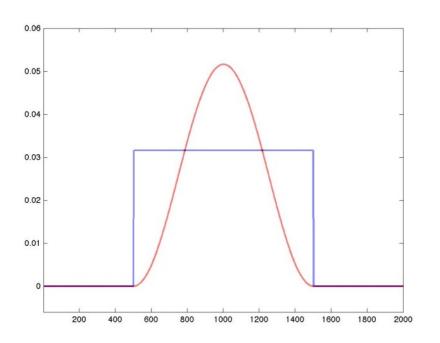
- Signal components at frequencies not sampled with Fourier transform spread their energy to the sampled frequencies
- To fit edges, many basis functions may be needed (lot of distant spectral leakage)

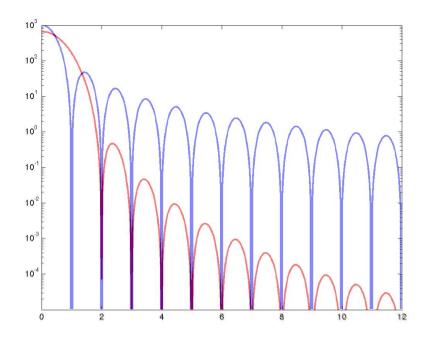


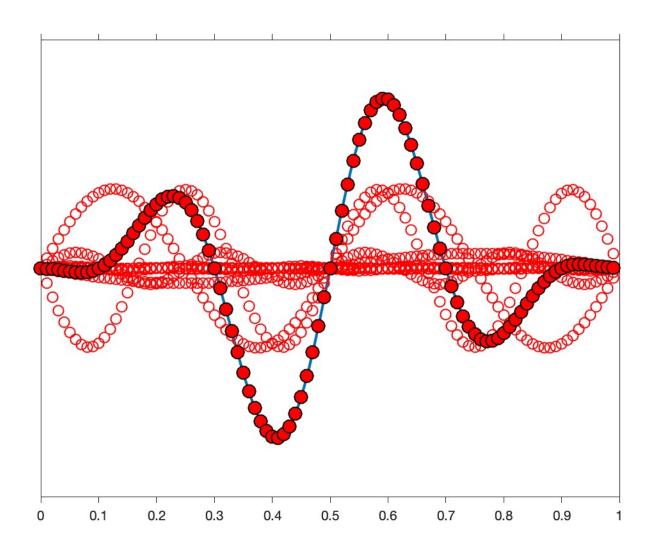
Spectral leakage in the frequency domain

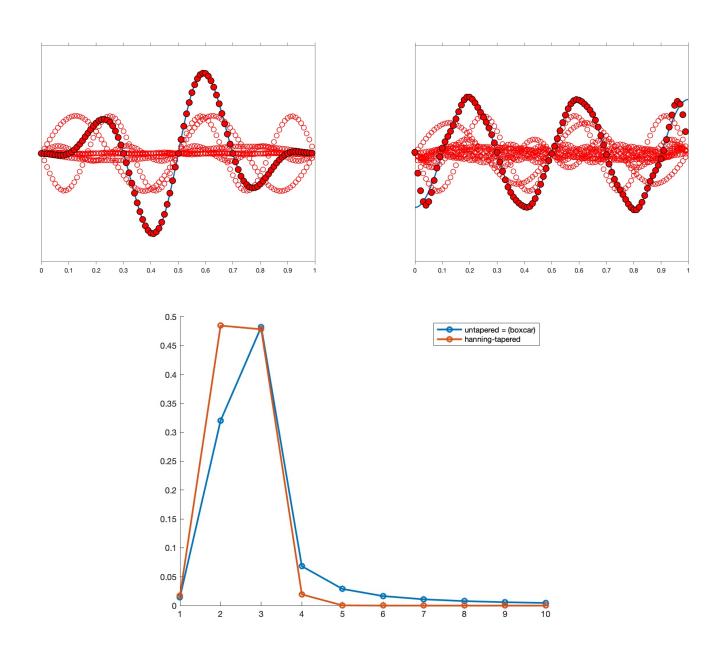


 Tapering = attenuating potentially problematic edges of the signal by multiplication with a 'taper function'









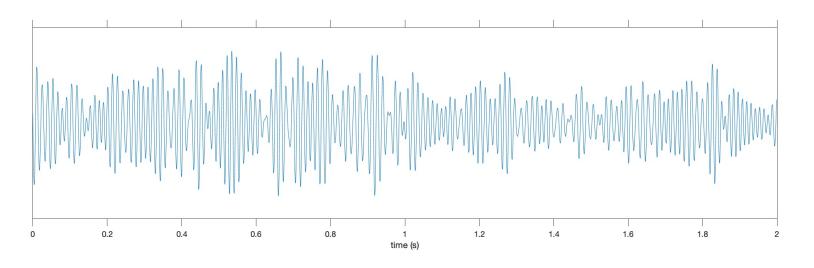
Multitapers

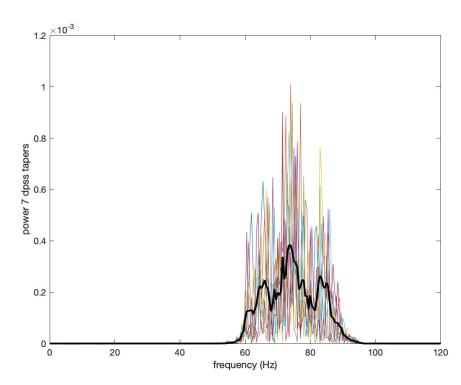
Make use of more than one taper and combine their leakage properties

Used for smoothing in the frequency domain

Instead of "smoothing" one can also say "controlled leakage"

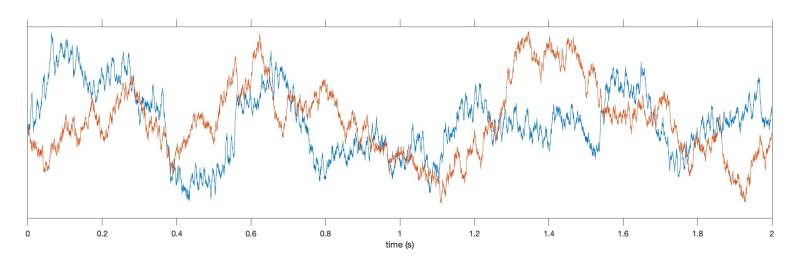
Multitapered spectral analysis

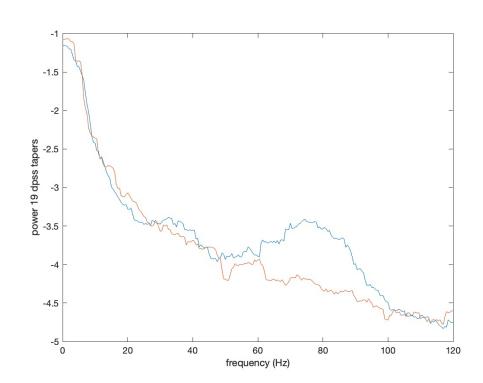




29

Multitapered spectral analysis





30

Multitapers

Multitapers are useful for reliable estimation of frequency components with a bandwidth > spectral resolution Low frequency components are better estimated using a single (Hanning) taper

```
%estimate low frequencies
                                 cfg = [];
cfg = [];
cfg.method = 'mtmfft';
cfg.foilim = [1 30];
cfq.taper = 'hanning';
freq=ft freqanalysis(cfg, data); freq=ft freqanalysis(cfg, data);
```

```
%estimate high frequencies
cfg.method = 'mtmfft';
cfg.foilim = [30 120];
cfg.taper = 'dpss';
cfg.tapsmofrq = 8;
```

Outline

Spectral analysis: going from time to frequency domain

Spectral leakage and (multi-)tapering

Time-frequency analysis

Time-frequency analysis

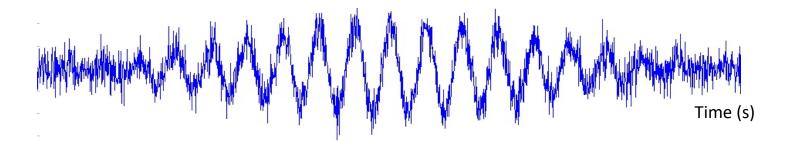
Typically, brain signals are not 'stationary'

 Divide the measured signal in shorter time segments and apply Fourier analysis to each signal segment

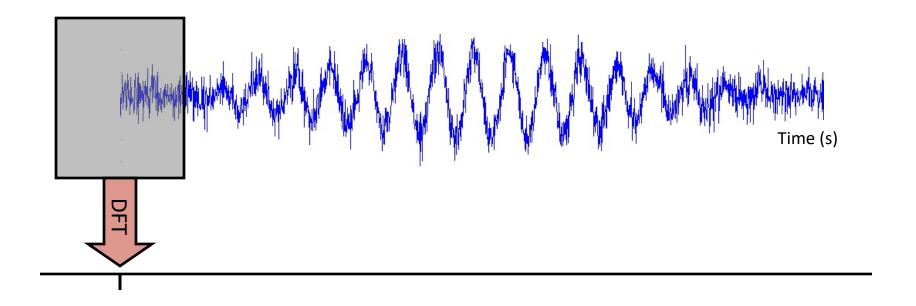
```
cfg = [];
cfg.method = 'mtmconvol';

.
freq = ft_freqanalysis(cfg, data);
```

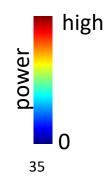
Time frequency analysis



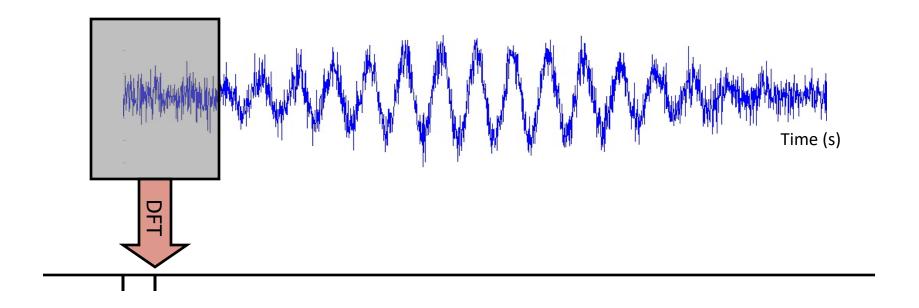
Time frequency analysis



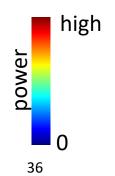
Frequency (Hz)

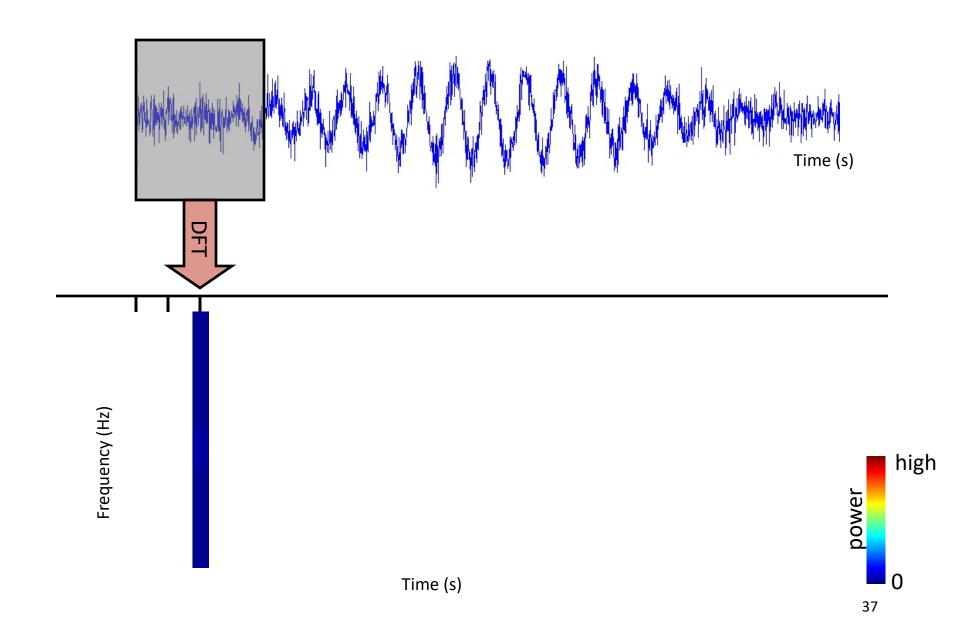


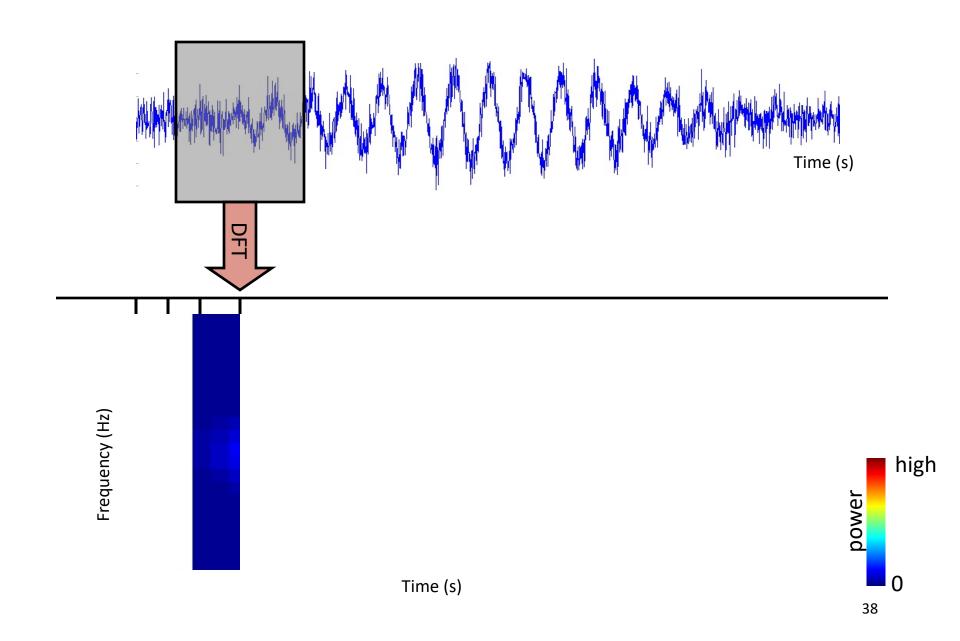
Time frequency analysis

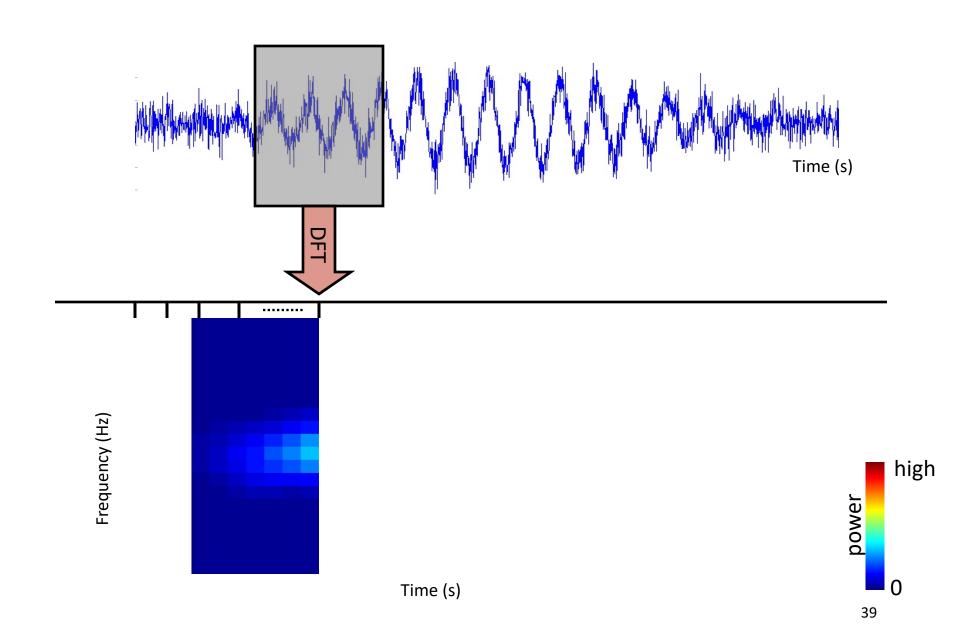


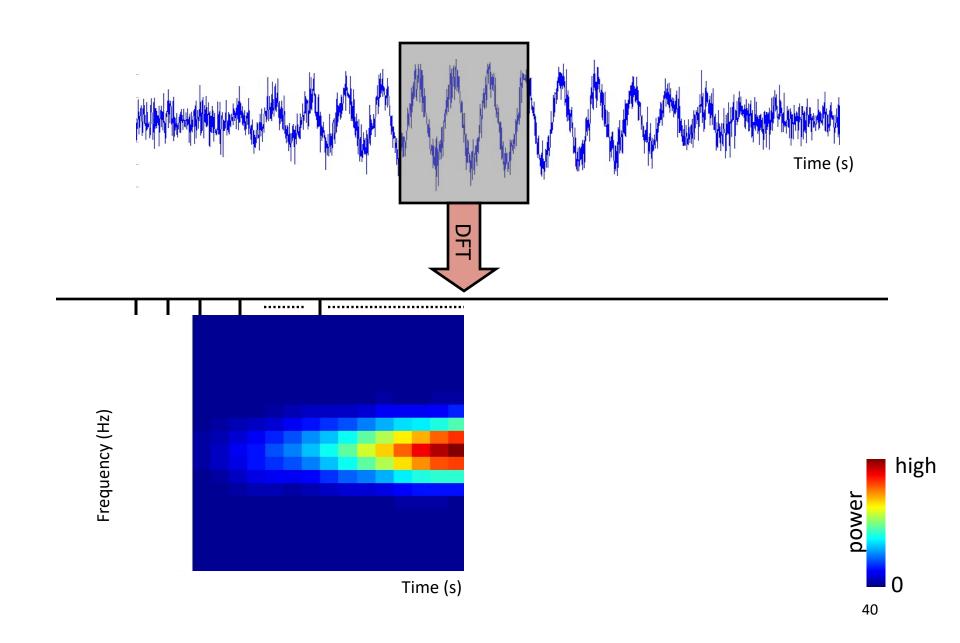
Frequency (Hz)

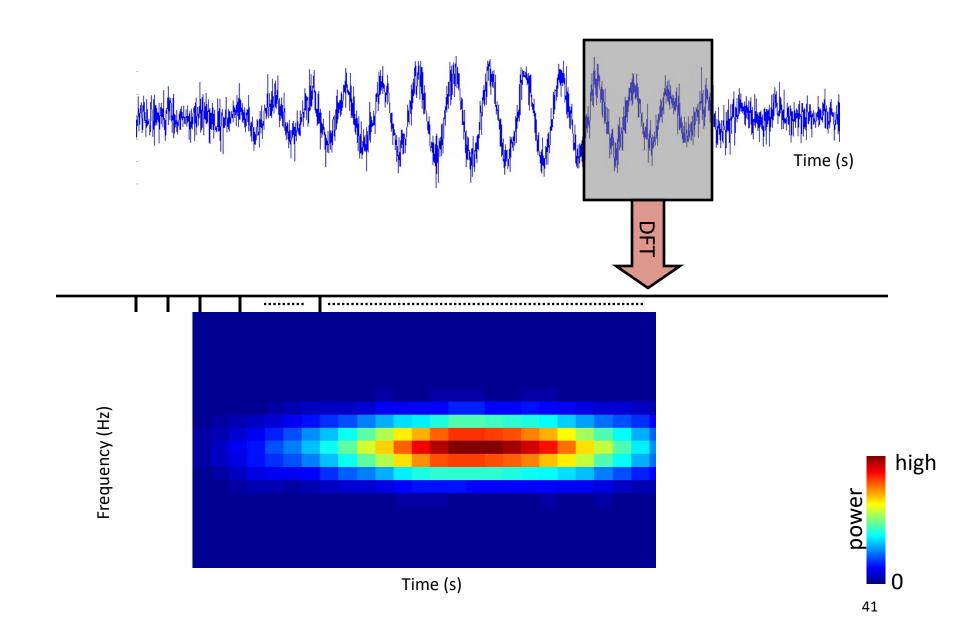


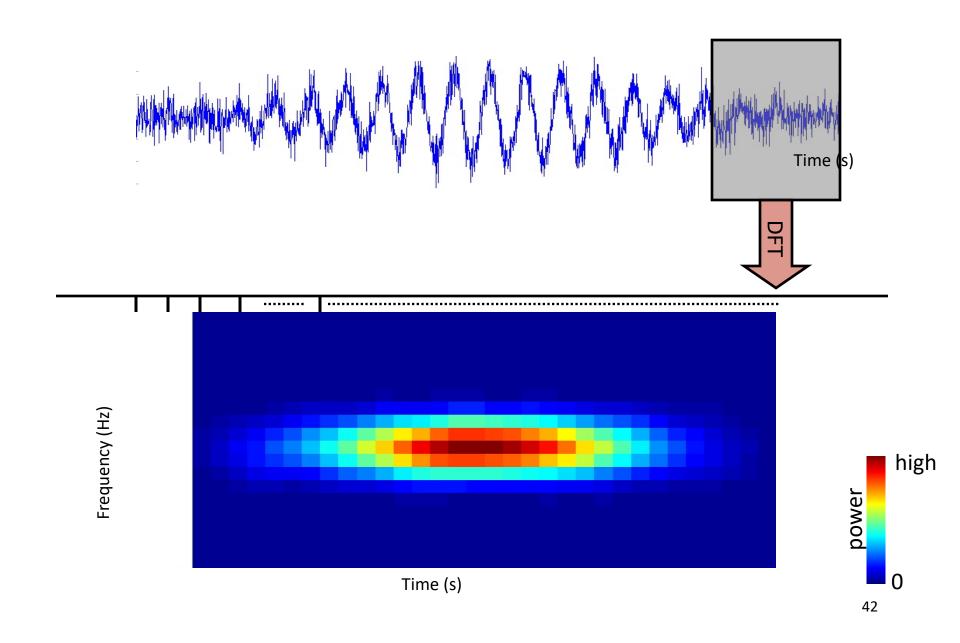


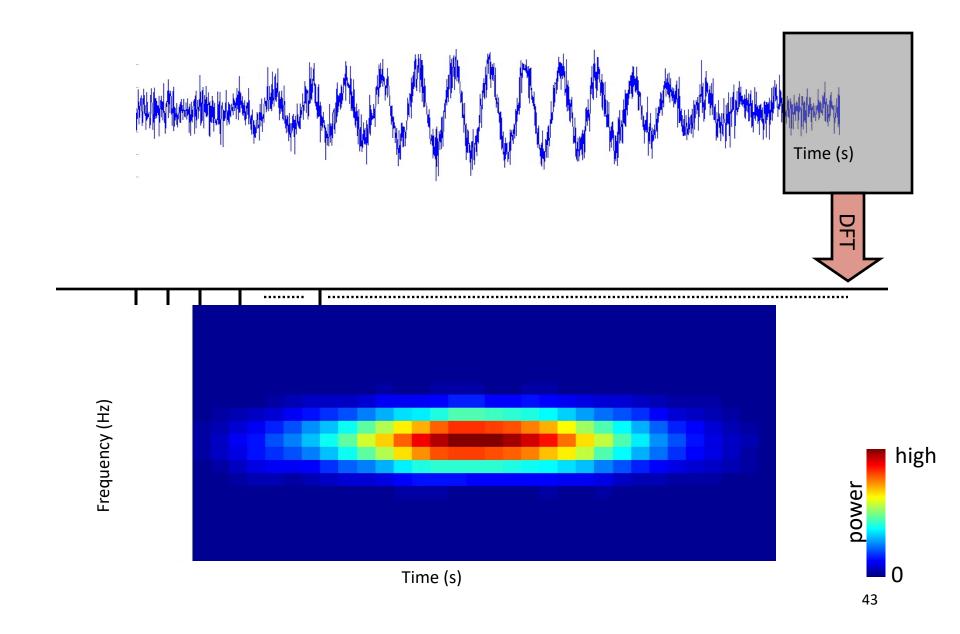




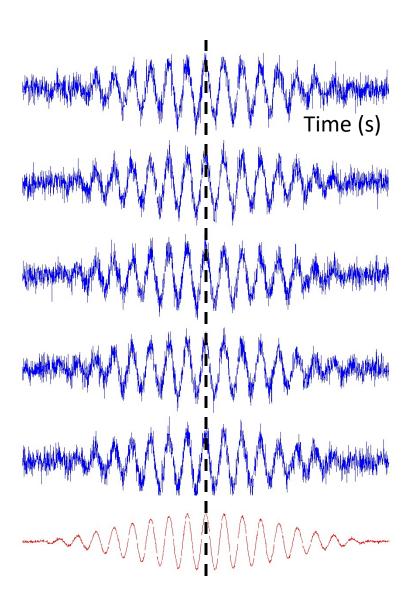


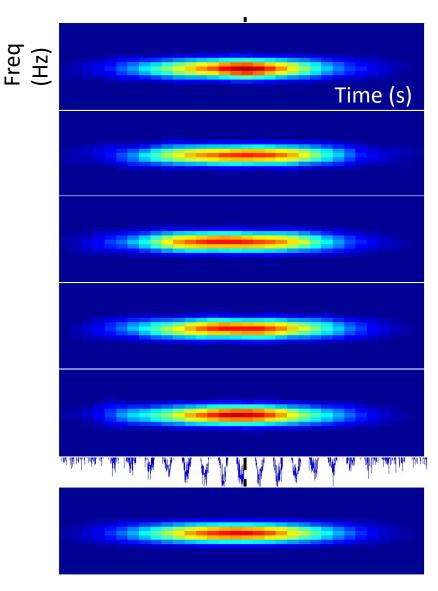


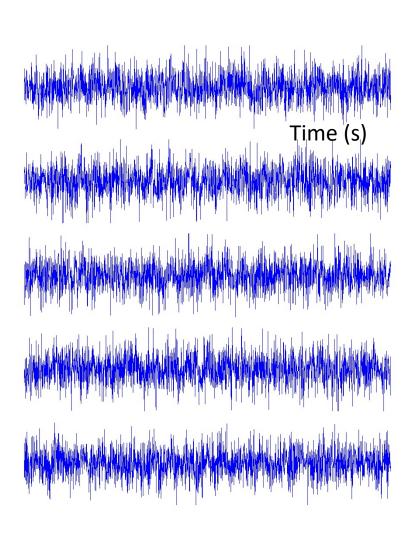


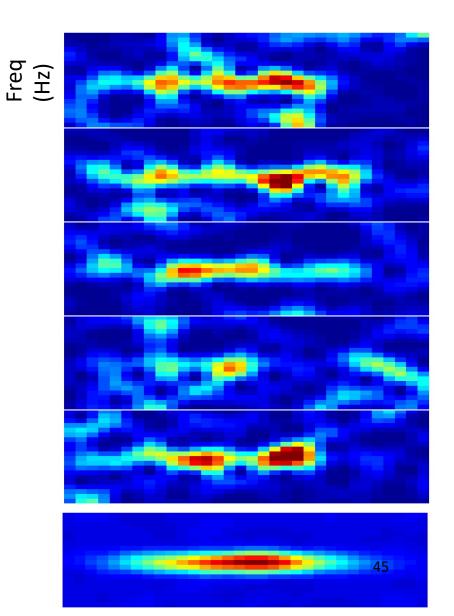


Evoked versus induced activity

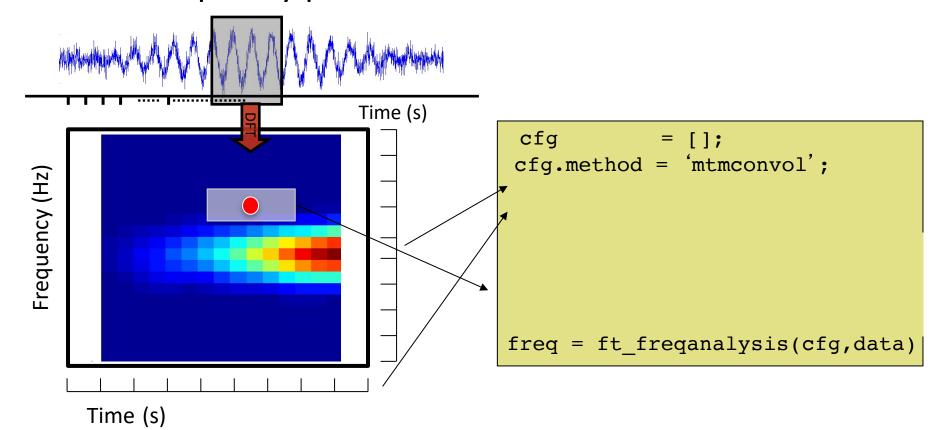








The time-frequency plane



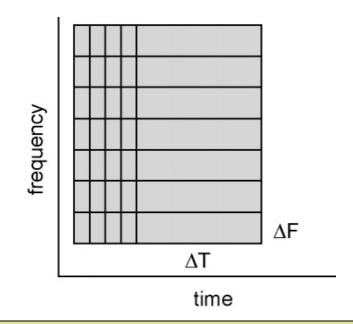
The time-frequency plane

The division is 'up to you'

Depends on the phenomenon

you want to investigate:

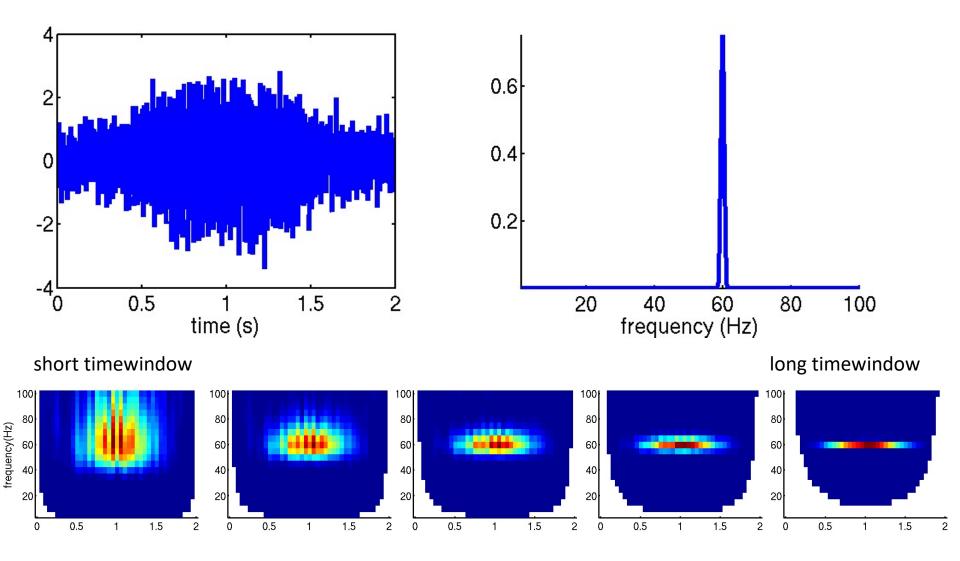
- Which time scale?
- Bandwidth?



```
cfg = [];
cfg.method = 'mtmconvol';
cfg.foi = [2 4 ... 40];
cfg.toi = [0:0.050:1.0];
cfg.t_ftimwin = [0.5 0.5 ... 0.5];
cfg.tapsmofrq = [ 4 4 ... 4 ];

freq = ft_freqanalysis(cfg,data);
```

Time versus frequency resolution



Wavelet analysis

Popular method to calculate time-frequency representations

Is based on convolution of signal with a family of 'wavelets' which capture the different frequency components in the signal

Convolution ~ local correlation

Wavelet analysis

```
cfg.method = 'wltconvol';
freq=ft_freqanalysis(cfg, data);
```

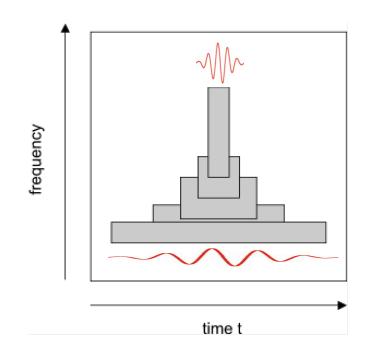
Wavelet analysis

Wavelet width determines the time-frequency resolution

Width is a function of frequency (often 5 cycles)

'Long' wavelet at low frequencies leads to relatively narrow frequency resolution but poor temporal resolution

'Short' wavelet at high frequencies leads to broad frequency resolution but more accurate temporal resolution



Summary

Spectral analysis: going from time to frequency domain

Spectral leakage and (multi-)tapering

Time-frequency analysis

This afternoon: hands-on

Time-frequency analysis on real data

Different methods

Parameter tweaking

Power versus baseline

Visualization