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Outline

1. Why do we need statistics in neuroscience?
• Inferential statistics and data analysis
• The interocular traumatic test (ITT) and why it fails so often

2. Inferential statistics is principled decision making under 
uncertainty

3. The Neyman-Pearson approach
• Its principles and how it deals with the multiple-comparison 

problem
• Between- and within-units-of-observation designs

4. The Permutation-based approach
• Comparison with the Neyman-Pearson approach
• Home-made test statistics

5. To remember



Why Do We Need Statistics in Neuroscience?

1. Statistics helps in making decisions under uncertainty. This
branch of statistics is called inferential statistics, and its tools 
are statistical tests.

2. Statistics provides methods that reveal patterns in the data 
which cannot be identified by eyeballing. This branch of 
statistics is called data analysis.

This talk is about inferential statistics.



Why Do We Need Statistics in Neuroscience?

• Because the interocular traumatic test (Berkson, 1950) very
often fails.

• The interocular traumatic test (ITT):
“When you look at the data, the conclusion hits you
right between the eyes!”

• A study in which the ITT does work:
In a sample of 20 participants, all show the same difference
pattern (across space, frequency, and time) between condition
A and condition B.

• Very often, the ITT fails because the observer is uncertain about 
the conclusion that can be drawn, or because different observers 
disagree with respect to the conclusion. 



Why Does the ITT often Fail in Neuroscience?

1. The signal-to-noise ratio of many measurements (EEG, MEG, 
fMRI-measured BOLD-response) is small, especially at the 
single-trial level. 

2. The measurements are high-dimensional data structures that
cannot be compared on the basis of visual inspection alone.
– MEEG: one comparison for every [sensor,time]-pair or

[sensors,frequency,time]-triplet (called samples in the 
following)

– fMRI: one comparison for every voxel



Is There a “Statistics for Neuroscience”?

• No, the general principles of statistical decision making also
apply to neuroscience

• But neuroscience has its own statistical problems that require
specialized methods

• These statistical problems are mainly the result of the high 
dimensionality of typical neuroscience data

• The multiple comparisons problem (MCP): the false alarm (type I 
error) rate increases with the number of comparisons



Inferential Statistics is Principled Decision Making

• Inferential statistics is decision making based on rational
principles

• The neuroscientist can choose between multiple rational
principles

• One can arrive at different conclusions depending on the 
principle on which the decision is based

In this sense, statistics is not about the truth.



Which Rational Decision Making Principles are 
Used?
1. The Neyman-Pearson approach
2. False discovery rate control
3. The permutation-based approach
4. The Bayesian approach

• I will discuss the Neyman-Pearson approach (the leader in the 
field) and the permutation-based approach (my personal
favorite) 

• I will focus on how these approaches deal with the MCP



Outline of the Discussion

For every statistical decision making principle, we will do the 
following:
1. Illustrate the statistical testing procedure by means of an

example (i.c., the difference between two means)
2. Explain the rationale behind the procedure
3. Show how the MCP is solved
4. Evaluate this solution



The Neyman-Pearson Approach

1. Formulate a so-called null hypothesis in terms of unknown
population parameters. For example: the difference between
the expected values in two populations (A and B).

2. Take some test statistic. For example: the two-sample T-
statistic.

3. Find a critical value for the test statistic such that, under the 
null hypothesis, the probability of exceeding this critical value
is controlled (e.g., at 0.05). This critical value is defined by
some critical p-value under the sampling distribution.



The Neyman-Pearson Approach

Constraints:
1. The probability distribution of the test statistic under the null

hypothesis has to be known. This requires auxiliary
assumptions about the data (normality, equal variance, 
independence), which may be false.

2. Under the alternative hypothesis, the probability of exceeding
the critical value must be large. In other words, the test must 
be powerful.



The Neyman-Pearson Approach



The Neyman-Pearson Approach

How is the MCP solved?
1. Formulate a null hypothesis in terms of unknown population

parameters at all elements of the multivariate random 
variable D (electrophys: all [channel,frequency,time]-triplets; 
fMRI: all voxels)

2. Take a test statistic that depends on the data at all elements
jointly. For example: the maximum (over all elements) T-
statistic, the size of the largest cluster exceeding some
threshold

3. Find a critical value for this test statistic such that, under the 
null hypothesis, the probability of exceeding this critical value
is controlled



The Neyman-Pearson Approach

Evaluation
1. The distribution under the null hypothesis is only known under

auxiliary assumptions (e.g., a Gaussian Random Field for the T-
statistics), and these may be false.

2. The test statistic for which the distribution is known may have 
a very low power.



Terminology: Between- and Within UO-designs

The observed data: a collection of trials (single-subject study) or a 
collection of subjects (multi-subject study). Trials and subjects
are called units of observation (UO).

Two possible experimental designs: a between-UO design and a 
within-UO design. In a between-UO design, every UO (trial or 
subject) is observed in only a single experimental condition, and 
in a within-UO design, every UO is observed in ALL experimental 
conditions.



The Neyman-Pearson Approach for a 
Within-UO Design



The Permutation-based Approach

1. Formulate a null hypothesis in terms of the probability
distributions of the observations: the probability distributions
of the observations in the different experimental conditions
are identical.

2. Take some test statistic.
3. Find a critical value for the test statistic such that, under the 

null hypothesis, the probability of exceeding this critical value
is controlled (e.g., at 0.05). This critical value is defined by
some critical p-value under the permutation distribution.



Differences with the Neyman-Pearson Approach

1. The null hypothesis is about the whole probability
distributions of the observations in the experimental
conditions, and not about some unknown population
parameters.

2. The p-value under the permutation distribution can be
calculated for every test statistic without any auxiliary
assumption

3. If you want your test to be sensitive for a particular aspect of 
the data, you must choose your test statistic accordingly.



The Permutation-based Approach for a 
Between-UO Design



The Permutation-based Approach for a 
Within-UO Design



The Permutation-based Approach: A Home-Made
Test Statistic After randomly permuting

congruent and incongruent 
trials:

Random differences between the 
dashed (randomly assigned
congruent trials) and the solid
(randomly assigned incongruent
trials) lines.

Random fluctuations of the t-
statistic signal around 0, 
exceeding the 5% univariate
critical values (-1.96 and 1.96) 
only on 5% of the samples.

Based on the permutation distribution 
of the maximum cluster-level sum



The Permutation-based Approach: A Home-Made
Test Statistic
1. Calculate a T-statistic for each of the samples in the 

multidimensional data structure (time-samples, [channel,time]-
pairs, [channel,frequency,time]-triplets).

2. Threshold these sample-specific statistics.
3. Construct connected clusters of samples that (1) exceed the 

threshold and (2) have the same sign.
4. Calculate the cluster-level statistics by taking the sum of the 

sample-specific T-statisics.
5. Take the maximum of the cluster-level statistics.
6. Evaluate this maximum under its permutation distribution.



The Permutation-based Approach: Another
Home-Made Test Statistic



The Randomization Approach for fMRI data: 
Comparison with GRF-based Inference



Permutation-based and the Neyman-Pearson
Approach to the MCP

The MCP is solved in the same way as in the Neyman-Pearson 
theory, but now the evaluation is much more positive:
1. The distribution under the null hypothesis does not depend on

auxiliary assumptions
2. The test statistic, which depends on the data at all samples 

jointly, can be chosen such that it is maximally sensitive to 
effects that are biophysically plausible.



To Remember

• Statistics is about decision making under uncertainty.
• Due to the low signal-to-noise ratio of most biological signals, 

and the dimensionality of its data structures, neuroscience
cannot do without statistics.

• Every decision making principle that is applied in neuroscience
must be able to solve the MCP.

• Permutation tests are ideally suited for neuroscience:
1. They solve the MCP without making auxiliairy assumptions.
2. They can increase sensitivity by incorporating biophysically

plausible constraints in the test statistic.
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