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Outline	

1.  Why	do	we	need	statistics	in	neuroscience?	
•  Inferential	statistics	and	data	analysis	
•  The	interocular	traumatic	test	(ITT)	and	why	it	fails	so	often	

2.  Inferential	statistics	is	principled	decision	making	under	
uncertainty	

3.  The	Neyman-Pearson	approach	
•  Its	principles	and	how	it	deals	with	the	multiple-comparison	

problem	
•  Between-	and	within-units-of-observation	designs	

4.  The	Permutation-based	approach	
•  Comparison	with	the	Neyman-Pearson	approach	
•  Home-made	test	statistics	

5.  To	remember	



Why	Do	We	Need	Statistics	in	Neuroscience?	

1.  Statistics	helps	in	making	decisions	under	uncertainty.	This	
branch	of	statistics	is	called	inferential	statistics,	and	its	tools	
are	statistical	tests.	

2.  Statistics	provides	methods	that	reveal	patterns	in	the	data	
which	cannot	be	identified	by	eyeballing.	This	branch	of	
statistics	is	called	data	analysis.	

This	talk	is	about	inferential	statistics.	
	



Why	Do	We	Need	Statistics	in	Neuroscience?	

•  Because	the	interocular	traumatic	test	(Berkson,	1950)	very	often	
fails.	

•  The	interocular	traumatic	test	(ITT):	
	 	 	“When	you	look	at	the	data,	the	conclusion	hits	you	 	 	
	 	right	between	the	eyes!”	

•  A	study	in	which	the	ITT	does	work:	
	In	a	sample	of	20	participants,	all	show	the	same	difference	
pattern	(across	space,	frequency,	and	time)	between	condition	A	
and	condition	B.	

•  Very	often,	the	ITT	fails	because	the	observer	is	uncertain	about	
the	conclusion	that	can	be	drawn,	or	because	different	observers	
disagree	with	respect	to	the	conclusion.		

	



Why	Does	the	ITT	often	Fail	in	Neuroscience?	

1.  The	signal-to-noise	ratio	of	many	measurements	(EEG,	MEG,	
fMRI-measured	BOLD-response)	is	small,	especially	at	the	
single-trial	level.		

2.  The	measurements	are	high-dimensional	data	structures	that	
cannot	be	compared	on	the	basis	of	visual	inspection	alone.	

–  MEEG:	one	comparison	for	every	[sensor,time]-pair	or	
[sensors,frequency,time]-triplet	(called	samples	in	the	
following)	

–  fMRI:	one	comparison	for	every	voxel	
	



Is	There	a	“Statistics	for	Neuroscience”?	

•  No,	the	general	principles	of	statistical	decision	making	also	
apply	to	neuroscience	

•  But	neuroscience	has	its	own	statistical	problems	that	require	
specialized	methods	

•  These	statistical	problems	are	mainly	the	result	of	the	high	
dimensionality	of	typical	neuroscience	data	

•  The	multiple	comparisons	problem	(MCP):	the	false	alarm	(type	I	
error)	rate	increases	with	the	number	of	comparisons	

	



Inferential	Statistics	is	Principled	Decision	Making	

•  Inferential	statistics	is	decision	making	based	on	rational	
principles	

•  The	neuroscientist	can	choose	between	multiple	rational	
principles	

•  One	can	arrive	at	different	conclusions	depending	on	the	
principle	on	which	the	decision	is	based	

	
In	this	sense,	statistics	is	not	about	the	truth.	
	



Which	Rational	Decision	Making	Principles	are	
Used?	

1.  The	Neyman-Pearson	approach		
2.  False	discovery	rate	control	
3.  The	permutation-based	approach	
4.  The	Bayesian	approach	

•  I	will	discuss	the	Neyman-Pearson	approach	(the	leader	in	the	
field)	and	the	permutation-based	approach	(my	personal	
favorite)		

•  I	will	focus	on	how	these	approaches	deal	with	the	MCP	
	



Outline	of	the	Discussion	

For	every	statistical	decision	making	principle,	we	will	do	the	
following:	
1.  Illustrate	the	statistical	testing	procedure	by	means	of	an	

example	(i.c.,	the	difference	between	two	means)	
2.  Explain	the	rationale	behind	the	procedure	
3.  Show	how	the	MCP	is	solved	
4.  Evaluate	this	solution	
	



The	Neyman-Pearson	Approach	

1.  Formulate	a	so-called	null	hypothesis	in	terms	of	unknown	
population	parameters.	For	example:	the	difference	between	
the	expected	values	in	two	populations	(A	and	B).	

2.  Take	some	test	statistic.	For	example:	the	two-sample	T-
statistic.	

3.  Find	a	critical	value	for	the	test	statistic	such	that,	under	the	
null	hypothesis,	the	probability	of	exceeding	this	critical	value	
is	controlled	(e.g.,	at	0.05).	This	critical	value	is	defined	by	
some	critical	p-value	under	the	sampling	distribution.	

	



The	Neyman-Pearson	Approach	

Constraints:	
1.  The	probability	distribution	of	the	test	statistic	under	the	null	

hypothesis	has	to	be	known.	This	requires	auxiliary	
assumptions	about	the	data	(normality,	equal	variance,	
independence),	which	may	be	false.	

2.  Under	the	alternative	hypothesis,	the	probability	of	exceeding	
the	critical	value	must	be	large.	In	other	words,	the	test	must	
be	powerful.	

	



The	Neyman-Pearson	Approach	



The	Neyman-Pearson	Approach	

How	is	the	MCP	solved?	
1.  Formulate	a	null	hypothesis	in	terms	of	unknown	population	

parameters	at	all	elements	of	the	multivariate	random	
variable	D	(electrophys:	all	[channel,frequency,time]-triplets;	
fMRI:	all	voxels)	

2.  Take	a	test	statistic	that	depends	on	the	data	at	all	elements	
jointly.	For	example:	the	maximum	(over	all	elements)	T-
statistic,	the	size	of	the	largest	cluster	exceeding	some	
threshold	

3.  Find	a	critical	value	for	this	test	statistic	such	that,	under	the	
null	hypothesis,	the	probability	of	exceeding	this	critical	value	
is	controlled	

	



The	Neyman-Pearson	Approach	

Evaluation	
1.  The	distribution	under	the	null	hypothesis	is	only	known	under	

auxiliary	assumptions	(e.g.,	a	Gaussian	Random	Field	for	the	T-
statistics),	and	these	may	be	false.	

2.  The	test	statistic	for	which	the	distribution	is	known	may	have	
a	very	low	power.	

	



Terminology:	Between-	and	Within	UO-designs	

The	observed	data:	a	collection	of	trials	(single-subject	study)	or	a	
collection	of	subjects	(multi-subject	study).	Trials	and	subjects	
are	called	units	of	observation	(UO).	

Two	possible	experimental	designs:	a	between-UO	design	and	a	
within-UO	design.	In	a	between-UO	design,	every	UO	(trial	or	
subject)	is	observed	in	only	a	single	experimental	condition,	and	
in	a	within-UO	design,	every	UO	is	observed	in	ALL	experimental	
conditions.	

	



The	Neyman-Pearson	Approach	for	a		
Within-UO	Design	



The	Permutation-based	Approach	

1.  Formulate	a	null	hypothesis	in	terms	of	the	probability	
distributions	of	the	observations:	the	probability	distributions	
of	the	observations	in	the	different	experimental	conditions	
are	identical.	

2.  Take	some	test	statistic.	
3.  Find	a	critical	value	for	the	test	statistic	such	that,	under	the	

null	hypothesis,	the	probability	of	exceeding	this	critical	value	
is	controlled	(e.g.,	at	0.05).	This	critical	value	is	defined	by	
some	critical	p-value	under	the	permutation	distribution.	

	



Differences	with	the	Neyman-Pearson	Approach	

1.  The	null	hypothesis	is	about	the	whole	probability	
distributions	of	the	observations	in	the	experimental	
conditions,	and	not	about	some	unknown	population	
parameters.	

2.  The	p-value	under	the	permutation	distribution	can	be	
calculated	for	every	test	statistic	without	any	auxiliary	
assumption	

3.  If	you	want	your	test	to	be	sensitive	for	a	particular	aspect	of	
the	data,	you	must	choose	your	test	statistic	accordingly.	



The	Permutation-based	Approach	for	a		
Between-UO	Design	



The	Permutation-based	Approach	for	a		
Within-UO	Design	



The	Permutation-based	Approach:	A	Home-Made	
Test	Statistic	 After randomly permuting 

congruent and incongruent 
trials: 

Random differences between the 
dashed (randomly assigned 
congruent trials) and the solid 
(randomly assigned incongruent 
trials) lines. 

Random fluctuations of the t-
statistic signal around 0, 
exceeding the 5% univariate 
critical values (-1.96 and 1.96) 
only on 5% of the samples. 

Based on the permutation distribution  
of the maximum cluster-level sum 



The	Permutation-based	Approach:	A	Home-Made	
Test	Statistic	

1.  Calculate	a	T-statistic	for	each	of	the	samples	in	the	
multidimensional	data	structure	(time-samples,	[channel,time]-
pairs,	[channel,frequency,time]-triplets).	

2.  Threshold	these	sample-specific	statistics.	
3.  Construct	connected	clusters	of	samples	that	(1)	exceed	the	

threshold	and	(2)	have	the	same	sign.	
4.  Calculate	the	cluster-level	statistics	by	taking	the	sum	of	the	

sample-specific	T-statisics.	
5.  Take	the	maximum	of	the	cluster-level	statistics.	
6.  Evaluate	this	maximum	under	its	permutation	distribution.	



The	Permutation-based	Approach:	Another	
Home-Made	Test	Statistic	



Permutation-based	and	the	Neyman-Pearson	
Approach	to	the	MCP	

The	MCP	is	solved	in	the	same	way	as	in	the	Neyman-Pearson	
theory,	but	now	the	evaluation	is	much	more	positive:	
1.  The	distribution	under	the	null	hypothesis	does	not	depend	on	

auxiliary	assumptions	
2.  The	test	statistic,	which	depends	on	the	data	at	all	samples	

jointly,	can	be	chosen	such	that	it	is	maximally	sensitive	to	
effects	that	are	biophysically	plausible.	

	



To	Remember	

•  Statistics	is	about	decision	making	under	uncertainty.	
•  Due	to	the	low	signal-to-noise	ratio	of	most	biological	signals,	

and	the	dimensionality	of	its	data	structures,	neuroscience	
cannot	do	without	statistics.	

•  Every	decision	making	principle	that	is	applied	in	neuroscience	
must	be	able	to	solve	the	MCP.	

•  Permutation	tests	are	ideally	suited	for	neuroscience:	
1.  They	solve	the	MCP	without	making	auxiliairy	assumptions.	
2.  They	can	increase	sensitivity	by	incorporating	biophysically	

plausible	constraints	in	the	test	statistic.	
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