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Outline	

1.  Why	do	we	need	sta/s/cs	in	neuroscience?	
•  Inferen/al	sta/s/cs	and	data	analysis	
•  The	interocular	trauma/c	test	(ITT)	and	why	it	fails	so	o<en	

2.  Inferen/al	sta/s/cs	is	principled	decision	making	under	
uncertainty	

3.  The	Neyman-Pearson	approach	
•  Its	principles	and	how	it	deals	with	the	mul/ple-comparison	

problem	
•  Between-	and	within-units-of-observa/on	designs	

4.  The	Permuta/on-based	approach	
•  Comparison	with	the	Neyman-Pearson	approach	
•  Home-made	test	sta/s/cs	

5.  To	remember	

Why	Do	We	Need	Sta%s%cs	in	Neuroscience?	

1.  Sta/s/cs	helps	in	making	decisions	under	uncertainty.	This	
branch	of	sta/s/cs	is	called	inferen&al	sta&s&cs,	and	its	tools	
are	sta&s&cal	tests.	

2.  Sta/s/cs	provides	methods	that	reveal	paNerns	in	the	data	
which	cannot	be	iden/fied	by	eyeballing.	This	branch	of	
sta/s/cs	is	called	data	analysis.	

This	talk	is	about	inferen/al	sta/s/cs.	
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Why	Do	We	Need	Sta%s%cs	in	Neuroscience?	

•  Because	the	interocular	trauma&c	test	(Berkson,	1950)	very	o<en	
fails.	

•  The	interocular	trauma/c	test	(ITT):	
	 	 	“When	you	look	at	the	data,	the	conclusion	hits	you	 	 	
	 	right	between	the	eyes!”	

•  A	study	in	which	the	ITT	does	work:	
	In	a	sample	of	20	par/cipants,	all	show	the	same	difference	
paNern	(across	space,	frequency,	and	/me)	between	condi/on	A	
and	condi/on	B.	

•  Very	o<en,	the	ITT	fails	because	the	observer	is	uncertain	about	
the	conclusion	that	can	be	drawn,	or	because	different	observers	
disagree	with	respect	to	the	conclusion.		

	

Why	Does	the	ITT	o>en	Fail	in	Neuroscience?	

1.  The	signal-to-noise	ra/o	of	many	measurements	(EEG,	MEG,	
fMRI-measured	BOLD-response)	is	small,	especially	at	the	
single-trial	level.		

2.  The	measurements	are	high-dimensional	data	structures	that	
cannot	be	compared	on	the	basis	of	visual	inspec/on	alone.	

–  MEEG:	one	comparison	for	every	[sensor,/me]-pair	or	
[sensors,frequency,/me]-triplet	(called	samples	in	the	
following)	

–  fMRI:	one	comparison	for	every	voxel	
	

Is	There	a	“Sta%s%cs	for	Neuroscience”?	

•  No,	the	general	principles	of	sta/s/cal	decision	making	also	apply	
to	neuroscience	

•  But	neuroscience	has	its	own	sta/s/cal	problems	that	require	
specialized	methods	

•  These	sta/s/cal	problems	are	mainly	the	result	of	the	high	
dimensionality	of	typical	neuroscience	data	

•  The	mul&ple	comparisons	problem	(MCP):	the	false	alarm	(type	I	
error)	rate	increases	with	the	number	of	comparisons	
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Inferen%al	Sta%s%cs	is	Principled	Decision	Making	

•  Inferen/al	sta/s/cs	is	decision	making	based	on	ra/onal	
principles	

•  The	neuroscien/st	can	choose	between	mul/ple	ra/onal	
principles	

•  One	can	arrive	at	different	conclusions	depending	on	the	
principle	on	which	the	decision	is	based	

	
In	this	sense,	sta&s&cs	is	not	about	the	truth.	
	

Which	Ra%onal	Decision	Making	Principles	are	
Used?	

1.  The	Neyman-Pearson	approach		
2.  False	discovery	rate	control	
3.  The	permuta/on-based	approach	
4.  The	Bayesian	approach	

•  I	will	discuss	the	Neyman-Pearson	approach	(the	leader	in	the	
field)	and	the	permuta/on-based	approach	(my	personal	
favorite)		

•  I	will	focus	on	how	these	approaches	deal	with	the	MCP	
	

Outline	of	the	Discussion	

For	every	sta/s/cal	decision	making	principle,	we	will	do	the	
following:	
1.  Illustrate	the	sta/s/cal	tes/ng	procedure	by	means	of	an	

example	(i.c.,	the	difference	between	two	means)	
2.  Explain	the	ra/onale	behind	the	procedure	
3.  Show	how	the	MCP	is	solved	
4.  Evaluate	this	solu/on	
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The	Neyman-Pearson	Approach	

1.  Formulate	a	so-called	null	hypothesis	in	terms	of	unknown	
popula/on	parameters.	For	example:	the	difference	between	
the	expected	values	in	two	popula/ons	(A	and	B).	

2.  Take	some	test	sta&s&c.	For	example:	the	two-sample	T-
sta/s/c.	

3.  Find	a	cri&cal	value	for	the	test	sta/s/c	such	that,	under	the	
null	hypothesis,	the	probability	of	exceeding	this	cri/cal	value	
is	controlled	(e.g.,	at	0.05).	This	cri/cal	value	is	defined	by	
some	cri/cal	p-value	under	the	sampling	distribu&on.	

	

The	Neyman-Pearson	Approach	

Constraints:	
1.  The	probability	distribu/on	of	the	test	sta/s/c	under	the	null	

hypothesis	has	to	be	known.	This	requires	auxiliary	
assump&ons	about	the	data	(normality,	equal	variance,	
independence),	which	may	be	false.	

2.  Under	the	alterna&ve	hypothesis,	the	probability	of	exceeding	
the	cri/cal	value	must	be	large.	In	other	words,	the	test	must	
be	powerful.	

	

The	Neyman-Pearson	Approach	
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The	Neyman-Pearson	Approach	

How	is	the	MCP	solved?	
1.  Formulate	a	null	hypothesis	in	terms	of	unknown	popula/on	

parameters	at	all	elements	of	the	mul/variate	random	
variable	D	(electrophys:	all	[channel,frequency,/me]-triplets;	
fMRI:	all	voxels)	

2.  Take	a	test	sta/s/c	that	depends	on	the	data	at	all	elements	
jointly.	For	example:	the	maximum	(over	all	elements)	T-
sta/s/c,	the	size	of	the	largest	cluster	exceeding	some	
threshold	

3.  Find	a	cri/cal	value	for	this	test	sta/s/c	such	that,	under	the	
null	hypothesis,	the	probability	of	exceeding	this	cri/cal	value	
is	controlled	

	

The	Neyman-Pearson	Approach	

Evalua/on	
1.  The	distribu/on	under	the	null	hypothesis	is	only	known	under	

auxiliary	assump/ons	(e.g.,	a	Gaussian	Random	Field	for	the	T-
sta/s/cs),	and	these	may	be	false.	

2.  The	test	sta/s/c	for	which	the	distribu/on	is	known	may	have	
a	very	low	power.	

	

Terminology:	Between-	and	Within	UO-designs	

The	observed	data:	a	collec/on	of	trials	(single-subject	study)	or	a	
collec/on	of	subjects	(mul/-subject	study).	Trials	and	subjects	
are	called	units	of	observa&on	(UO).	

Two	possible	experimental	designs:	a	between-UO	design	and	a	
within-UO	design.	In	a	between-UO	design,	every	UO	(trial	or	
subject)	is	observed	in	only	a	single	experimental	condi/on,	and	
in	a	within-UO	design,	every	UO	is	observed	in	ALL	experimental	
condi/ons.	
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The	Neyman-Pearson	Approach	for	a		
Within-UO	Design	

The	Permuta%on-based	Approach	

1.  Formulate	a	null	hypothesis	in	terms	of	the	probability	
distribu&ons	of	the	observa/ons:	the	probability	distribu/ons	
of	the	observa/ons	in	the	different	experimental	condi/ons	
are	iden/cal.	

2.  Take	some	test	sta/s/c.	
3.  Find	a	cri/cal	value	for	the	test	sta/s/c	such	that,	under	the	

null	hypothesis,	the	probability	of	exceeding	this	cri/cal	value	
is	controlled	(e.g.,	at	0.05).	This	cri/cal	value	is	defined	by	
some	cri/cal	p-value	under	the	permuta&on	distribu&on.	

	

Differences	with	the	Neyman-Pearson	Approach	

1.  The	null	hypothesis	is	about	the	whole	probability	
distribu/ons	of	the	observa/ons	in	the	experimental	
condi/ons,	and	not	about	some	unknown	popula/on	
parameters.	

2.  The	p-value	under	the	permuta/on	distribu/on	can	be	
calculated	for	every	test	sta/s/c	without	any	auxiliary	
assump/on	

3.  If	you	want	your	test	to	be	sensi/ve	for	a	par/cular	aspect	of	
the	data,	you	must	choose	your	test	sta/s/c	accordingly.	
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The	Permuta%on-based	Approach	for	a		
Between-UO	Design	

The	Permuta%on-based	Approach	for	a		
Within-UO	Design	

The	Permuta%on-based	Approach:	A	Home-Made	
Test	Sta%s%c	 After randomly permuting 

congruent and incongruent 
trials: 

Random differences between the 
dashed (randomly assigned 
congruent trials) and the solid 
(randomly assigned incongruent 
trials) lines. 

Random fluctuations of the t-
statistic signal around 0, 
exceeding the 5% univariate 
critical values (-1.96 and 1.96) 
only on 5% of the samples. 

Based on the permutation distribution  
of the maximum cluster-level sum 
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The	Permuta%on-based	Approach:	A	Home-Made	
Test	Sta%s%c	

1.  Calculate	a	T-sta/s/c	for	each	of	the	samples	in	the	
mul/dimensional	data	structure	(/me-samples,	[channel,/me]-
pairs,	[channel,frequency,/me]-triplets).	

2.  Threshold	these	sample-specific	sta/s/cs.	
3.  Construct	connected	clusters	of	samples	that	(1)	exceed	the	

threshold	and	(2)	have	the	same	sign.	
4.  Calculate	the	cluster-level	sta/s/cs	by	taking	the	sum	of	the	

sample-specific	T-sta/sics.	
5.  Take	the	maximum	of	the	cluster-level	sta/s/cs.	
6.  Evaluate	this	maximum	under	its	permuta&on	distribu&on.	

The	Permuta%on-based	Approach:	Another	
Home-Made	Test	Sta%s%c	

Permuta%on-based	and	the	Neyman-Pearson	
Approach	to	the	MCP	

The	MCP	is	solved	in	the	same	way	as	in	the	Neyman-Pearson	
theory,	but	now	the	evalua/on	is	much	more	posi/ve:	
1.  The	distribu/on	under	the	null	hypothesis	does	not	depend	on	

auxiliary	assump/ons	
2.  The	test	sta/s/c,	which	depends	on	the	data	at	all	samples	

jointly,	can	be	chosen	such	that	it	is	maximally	sensi/ve	to	
effects	that	are	biophysically	plausible.	
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To	Remember	

•  Sta/s/cs	is	about	decision	making	under	uncertainty.	
•  Due	to	the	low	signal-to-noise	ra/o	of	most	biological	signals,	

and	the	dimensionality	of	its	data	structures,	neuroscience	
cannot	do	without	sta/s/cs.	

•  Every	decision	making	principle	that	is	applied	in	neuroscience	
must	be	able	to	solve	the	MCP.	

•  Permuta/on	tests	are	ideally	suited	for	neuroscience:	
1.  They	solve	the	MCP	without	making	auxiliairy	assump/ons.	
2.  They	can	increase	sensi/vity	by	incorpora/ng	biophysically	

plausible	constraints	in	the	test	sta/s/c.	
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