

# Fundamentals of the analysis of neuronal oscillations

Nietzsche Lam

Donders Institute for Brain, Cognition and Behaviour Radboud University Nijmegen, The Netherlands

Max Planck Institute for Psycholinguistics





#### **Separating sources**

- Use the temporal aspects of the data at the channel level
  - ERF latencies
  - (ERF difference waves)
  - Filtering the time-series
  - Spectral decomposition
- Use the spatial aspects of the data





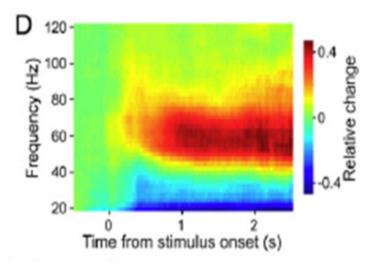
# Brain signals contain oscillatory activity at multiple frequencies





Hoogenboom et al, 2006









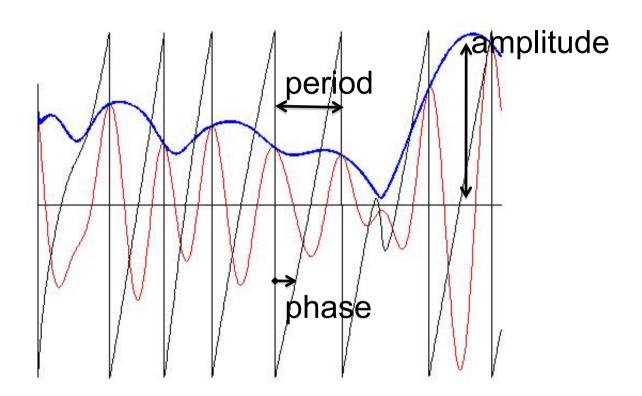
#### **Outline**

- Spectral analysis: going from time to frequency domain
- Issues with finite and discrete sampling
- Spectral leakage and (multi-)tapering
- Time-frequency analysis





# A background note on oscillations

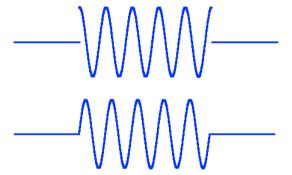






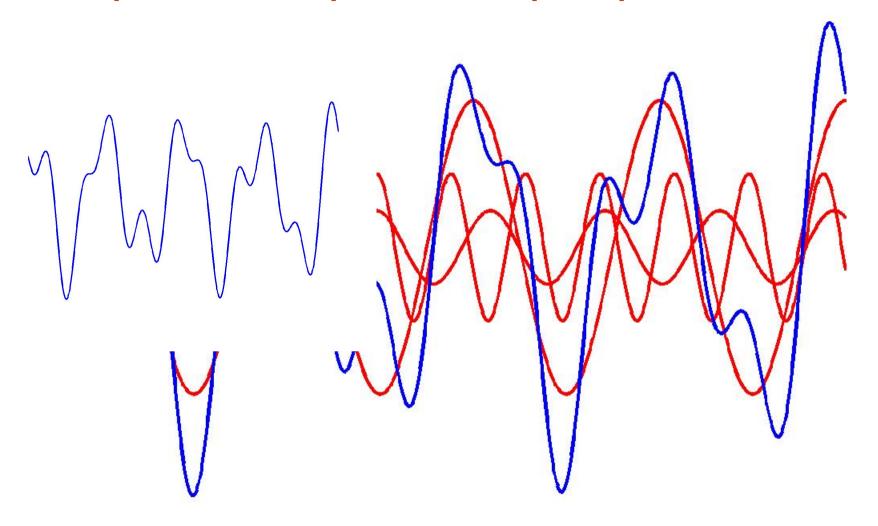
# **Spectral analysis**

- Deconstructing a time domain signal into its constituent oscillatory components, a.k.a. Fourier analysis
- Using simple oscillatory functions: cosines and sines



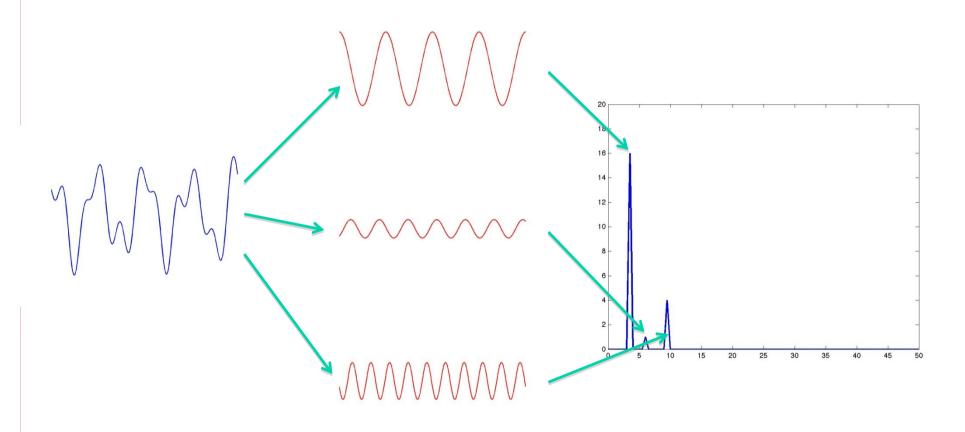


# Spectral decomposition: the principle





# Spectral decomposition: the power spectrum







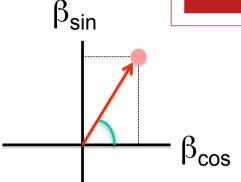
# **Spectral analysis**

- Deconstructing a time domain signal into its constituent oscillatory components, a.k.a. Fourier analysis
- Using simple oscillatory functions: cosines and sines
- Express signal as function of frequency, rather than time
- Concept: linear regression using oscillatory basis functions



# **Spectral analysis ~ regression**





- $\mathbf{Y} = \beta \times \mathbf{X}$
- X : set of basis functions
- $\beta_i$  ~ 'goodness-of-fit' of basis function *i* with data
- $\beta$  for cosine and sine components for a given frequency map onto amplitude and phase estimate.
- Restriction: basis functions should be 'orthogonal
- Consequence 1: frequencies not arbitrary ->
  integer amount of cycles should fit into N points.
- Consequence 2: N-point signal -> N basis functions





#### **Time-frequency relation**

- Consequence 1: frequencies not arbitrary -> integer amount of cycles should fit into N points (of length T).
- The frequency resolution is determined by the length of the data segments (T)
- Rayleigh frequency =  $1/T = \Delta f$  = frequency resolution

Time window:

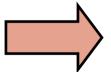
1 s

Frequencies:

(0) 1 2 3 4 5 6 .. Hz

Time window:

0.2 s



**Frequencies:** 

(0) 5 10 15 20 .. Hz



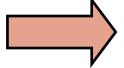


#### **Time-frequency relation**

- Consequence 2: N-point signal -> N basis functions
- N basis functions -> N/2 frequencies
- The highest frequency that can be resolved depends on the sampling frequency F
- Nyquist frequency = F/2

Sampling freq 1 kHz

Time window 1 s

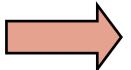


Frequencies:

(0) 1 2 ... 499 500 Hz

Sampling freq 400 Hz

Time window 0.25 s



Frequencies:

(0) 4 8... 196 200 Hz





#### **Spectral analysis**

- Deconstructing a time domain signal into its constituent oscillatory components, a.k.a. Fourier analysis
- Using simple oscillatory functions: cosines and sines
- Express signal as function of frequency, rather than time
- Concept: linear regression using oscillatory basis functions
- Each oscillatory component has an amplitude and phase
- Discrete and finite sampling constrains the frequency axis

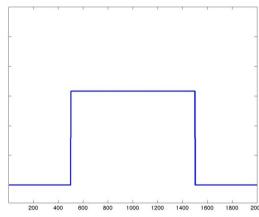


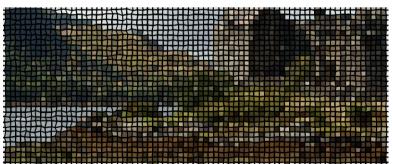


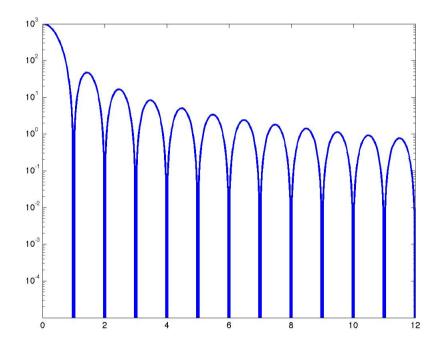


#### Spectral leakage and tapering

- True oscillations in data at frequencies not sampled with Fourier transform spread their energy to the sampled frequencies
- Not tapering = applying a boxcar taper
- Each type of taper has a specific leakage profile



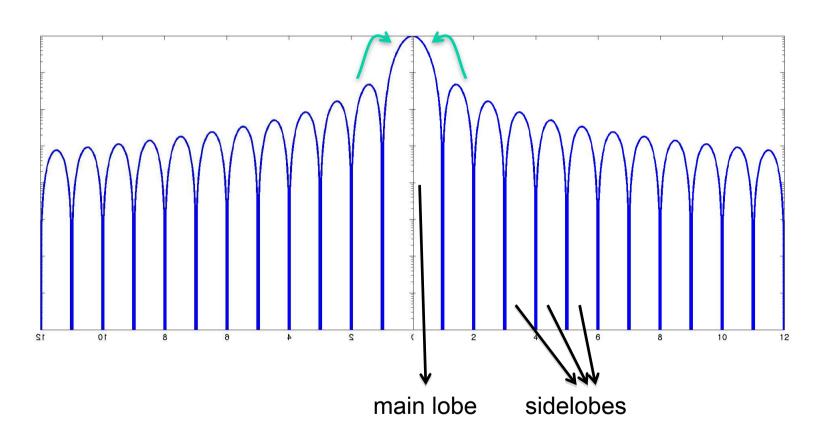








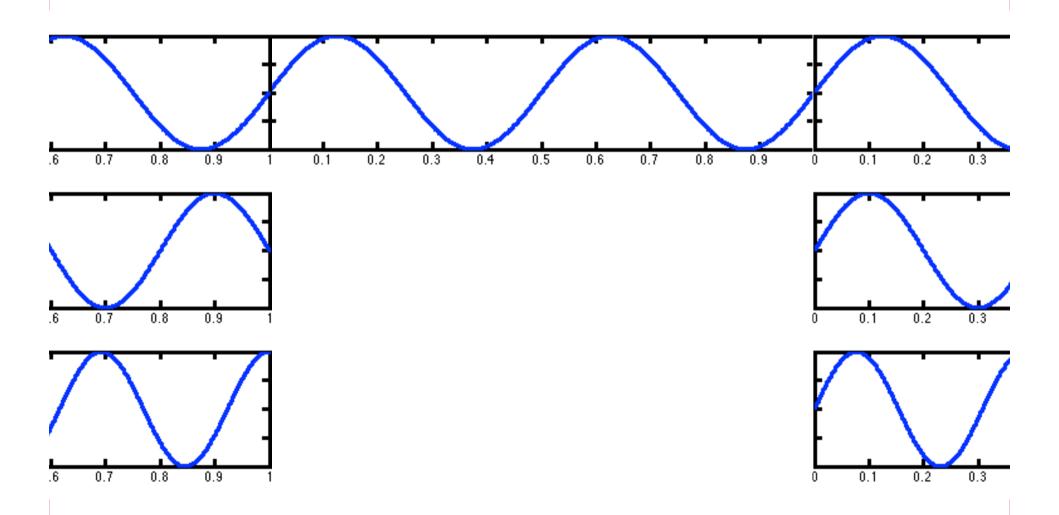
# **Spectral leakage**





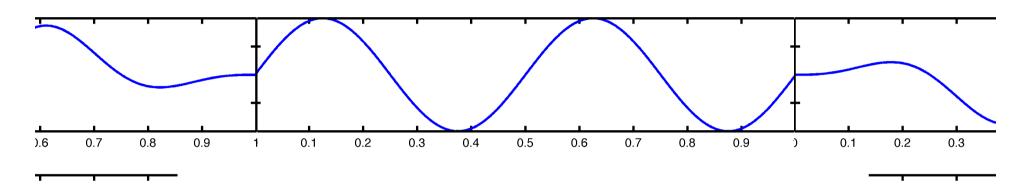


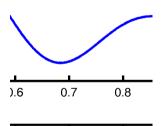
# **Tapering in spectral analysis**

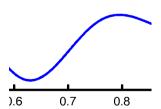


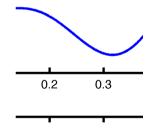


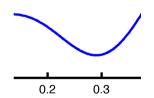
# **Tapering in spectral analysis**





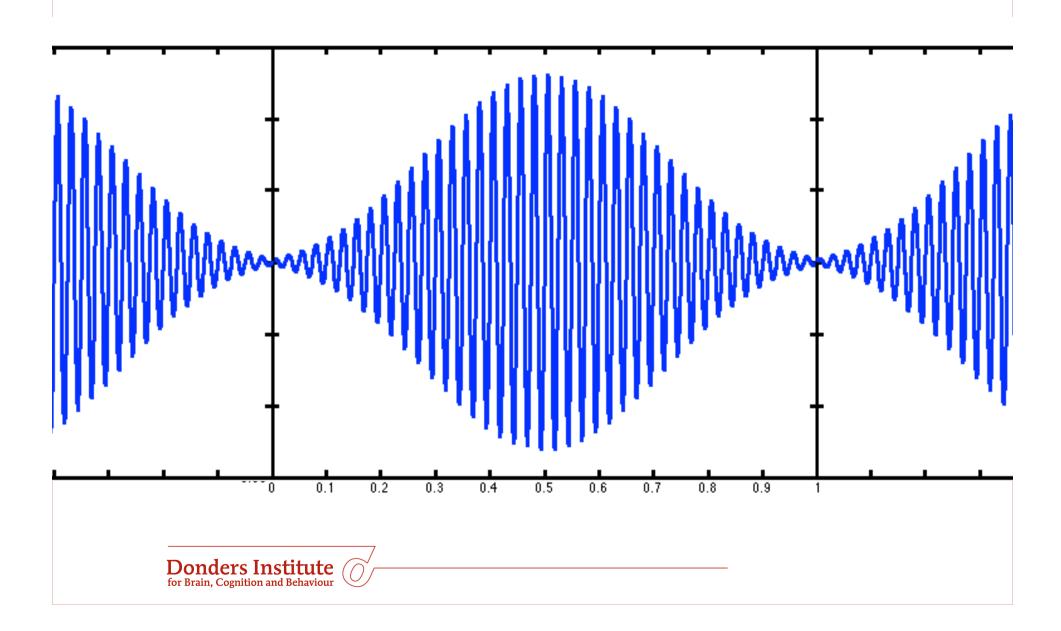








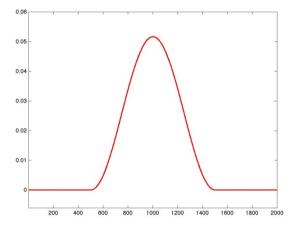
# **Tapering in spectral analysis**



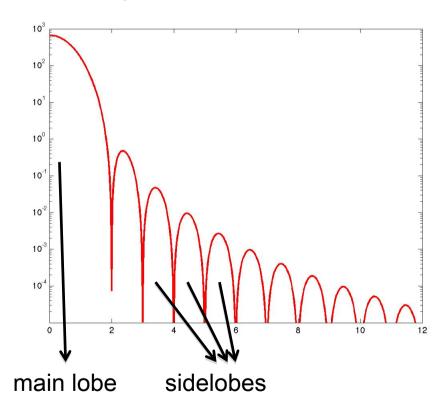


#### Spectral leakage and tapering

- True oscillations in data at frequencies not sampled with Fourier transform spread their energy to the sampled frequencies
- Not tapering = applying a boxcar taper
- Each type of taper has a specific leakage profile











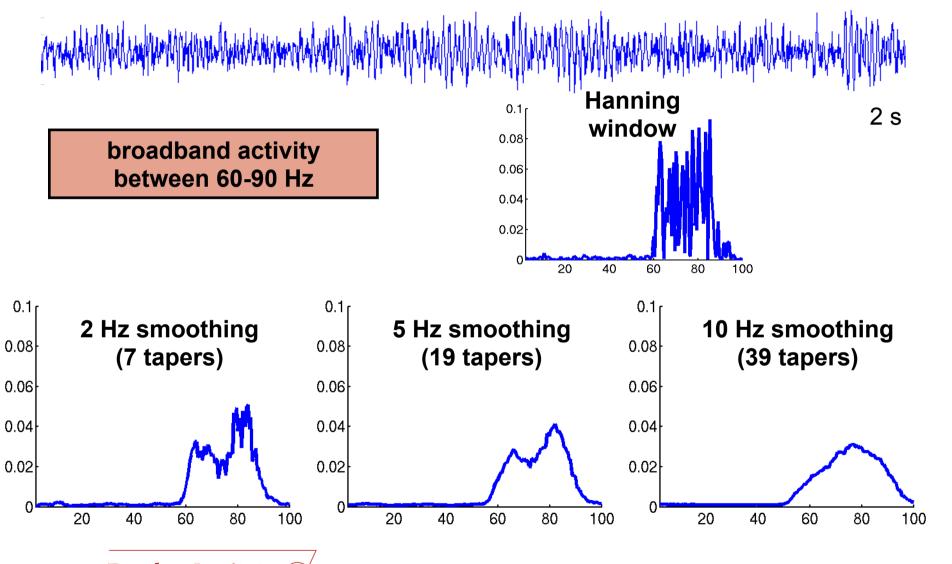
# **Multitapers**

- Make use of more than one taper and combine their properties
- Used for smoothing in the frequency domain
- Instead of "smoothing" one can also say "controlled leakage"





#### **Multitapered spectral analysis**

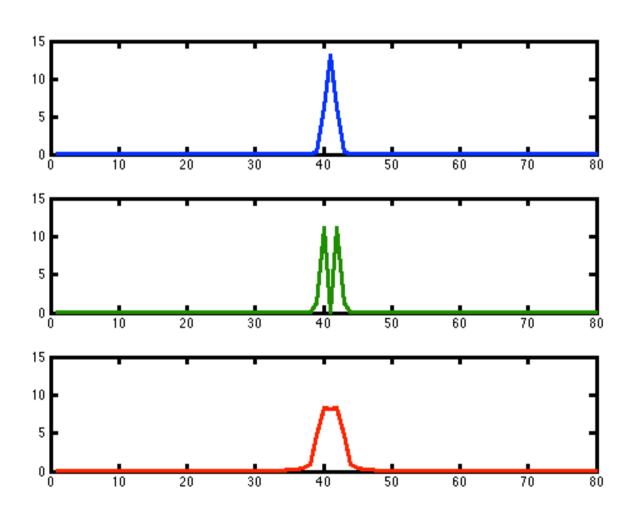


**Donders Institute** for Brain, Cognition and Behaviour

Mitra & Pesaran, 1999, Biophys



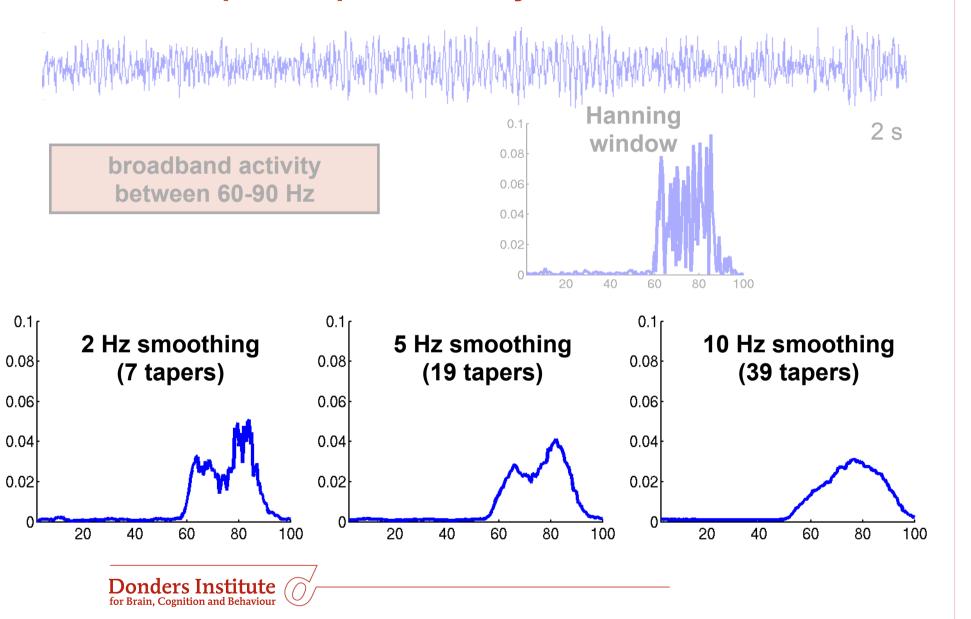
# **Multitapered spectral analysis**







#### **Multitapered spectral analysis**





#### **Multitapers**

- Multitapers are useful for reliable estimation of high frequency components
- Low frequency components are better estimated using a single (Hanning) taper

```
%estimate low frequencies

cfg = [];
cfg.method = 'mtmfft';
cfg.foilim = [1 30];
cfg.taper = 'hanning';
.
freq=ft_freqanalysis(cfg, data);
%estimate high frequencies

cfg = [];
cfg.method = 'mtmfft';
cfg.foilim = [30 120];
cfg.taper = 'dpss';
cfg.tapsmofrq = 8;
.
freq=ft_freqanalysis(cfg, data);
```





# **Sub summary**

- Spectral analysis
  - Decompose signal into its constituent oscillatory components
  - Focused on 'stationary' power
- Tapers
  - Boxcar, Hanning, Gaussian
- Multitapers
  - Control spectral leakage/smoothing





# Time-frequency analysis

- Typically, brain signals are not 'stationary'
- Divide the measured signal in shorter time segments and apply Fourier analysis to each signal segment
- Everything we saw so far with respect to frequency resolution applies here as well

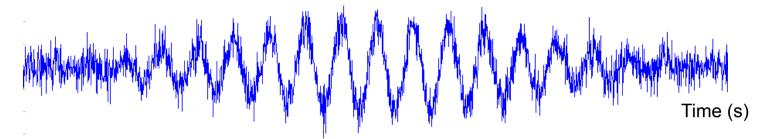
```
cfg = [];
cfg.method = 'mtmconvol';

.
freq = ft_freqanalysis(cfg, data);
```



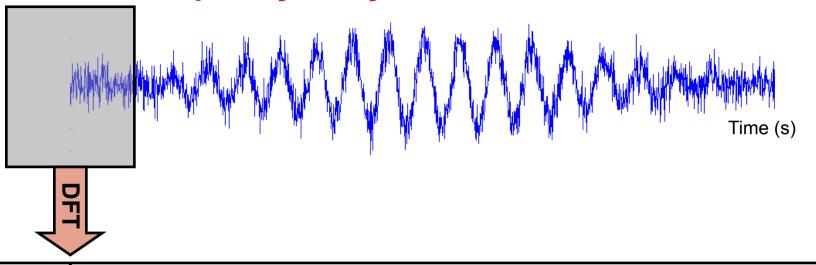


# Time frequency analysis

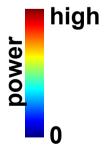








Frequency (Hz)

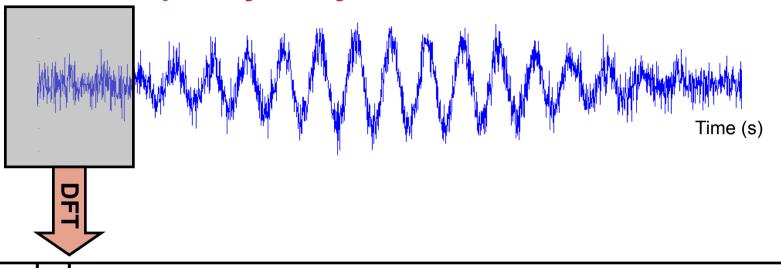


Time (s)









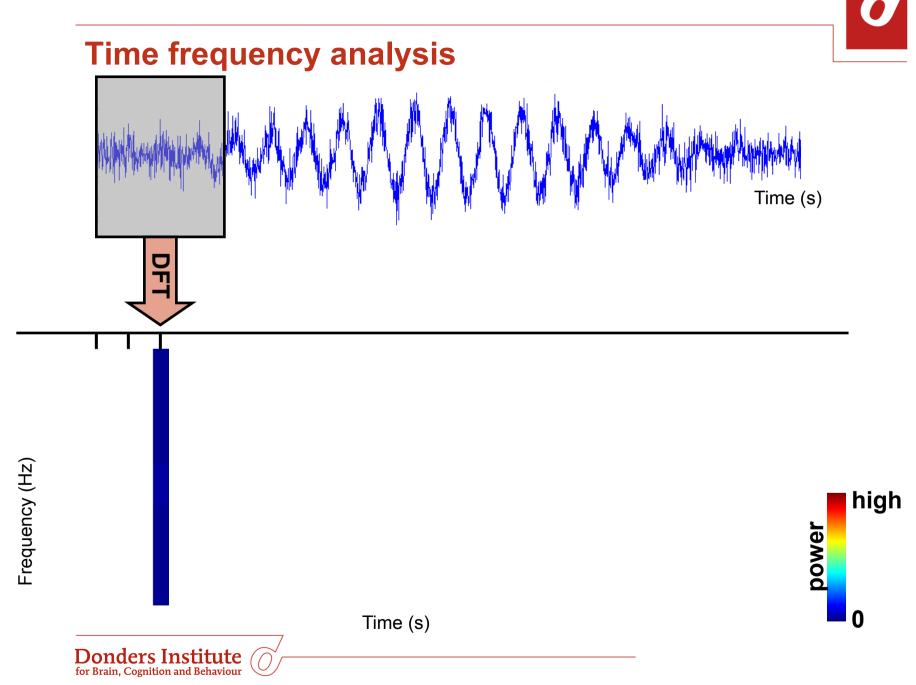
Frequency (Hz)



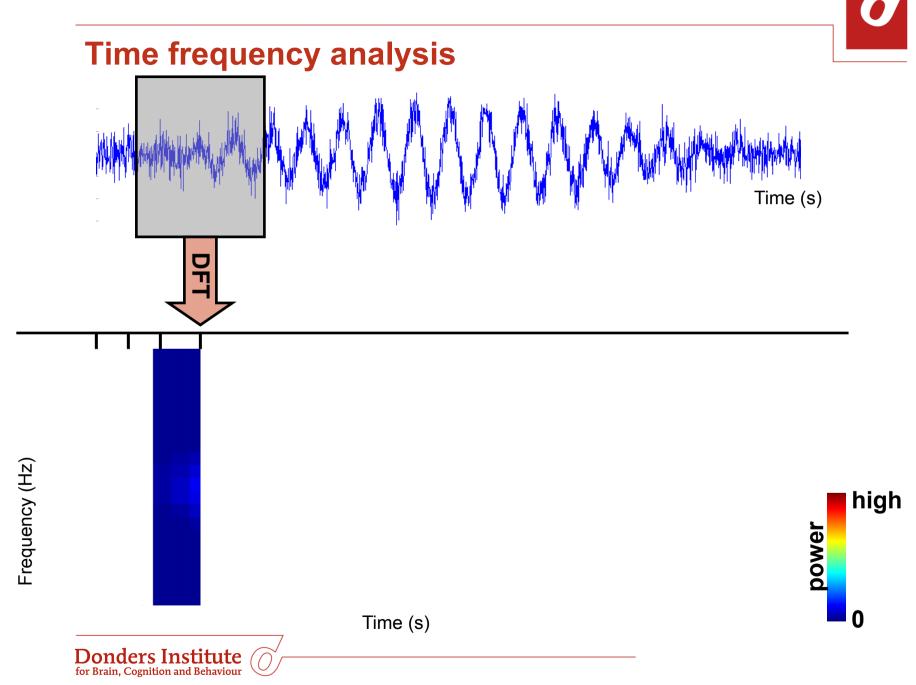
Time (s)



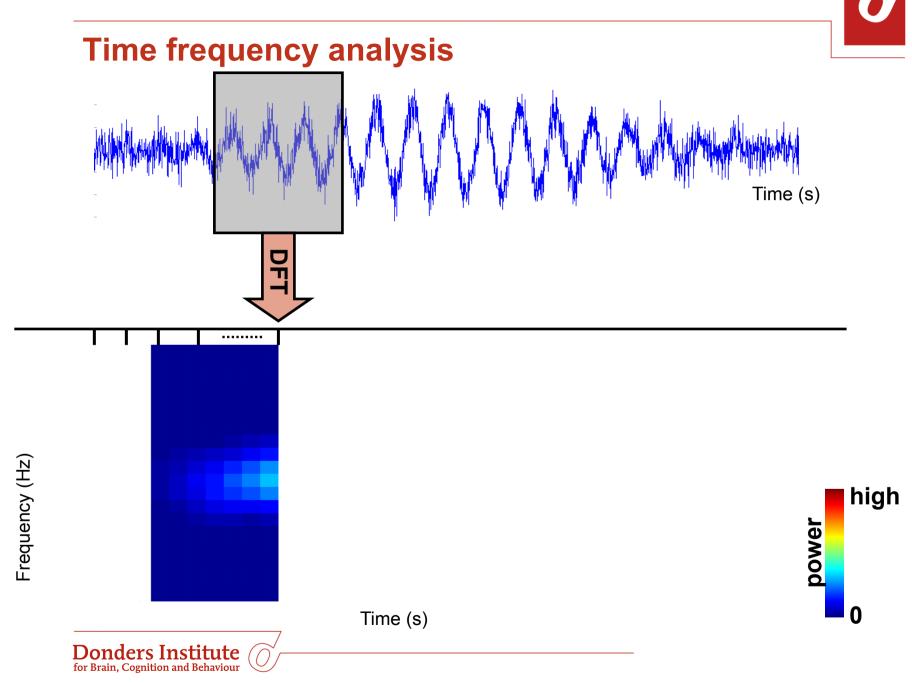




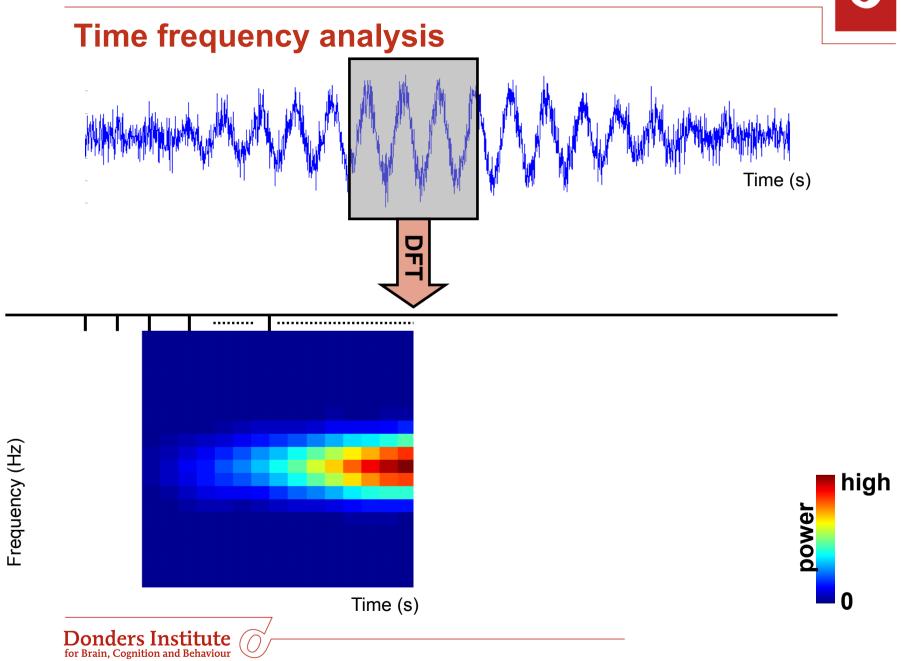


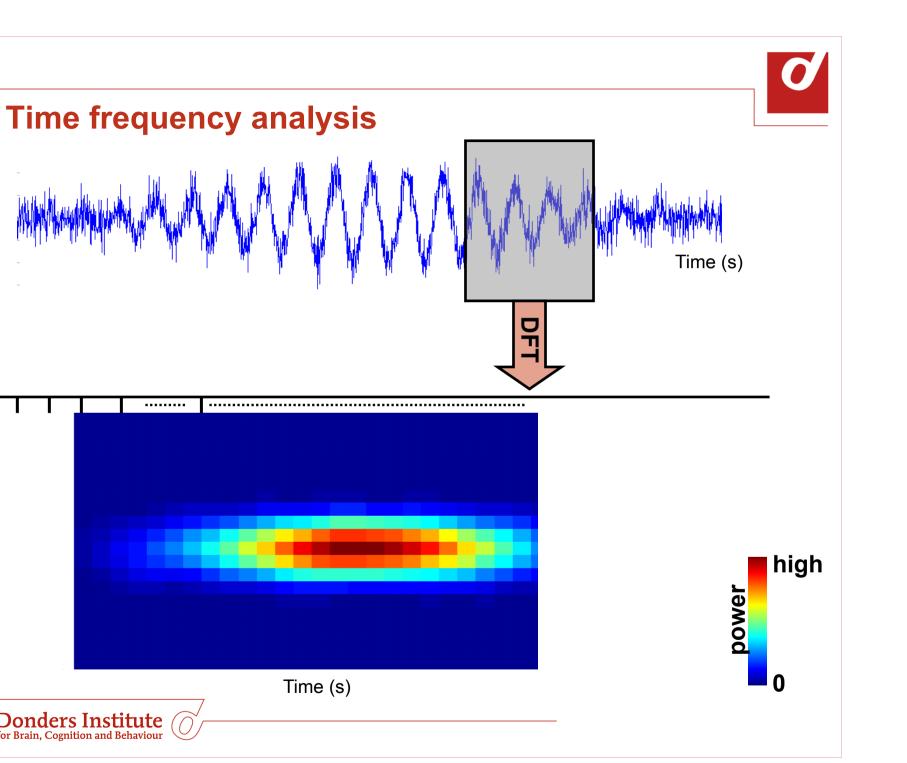






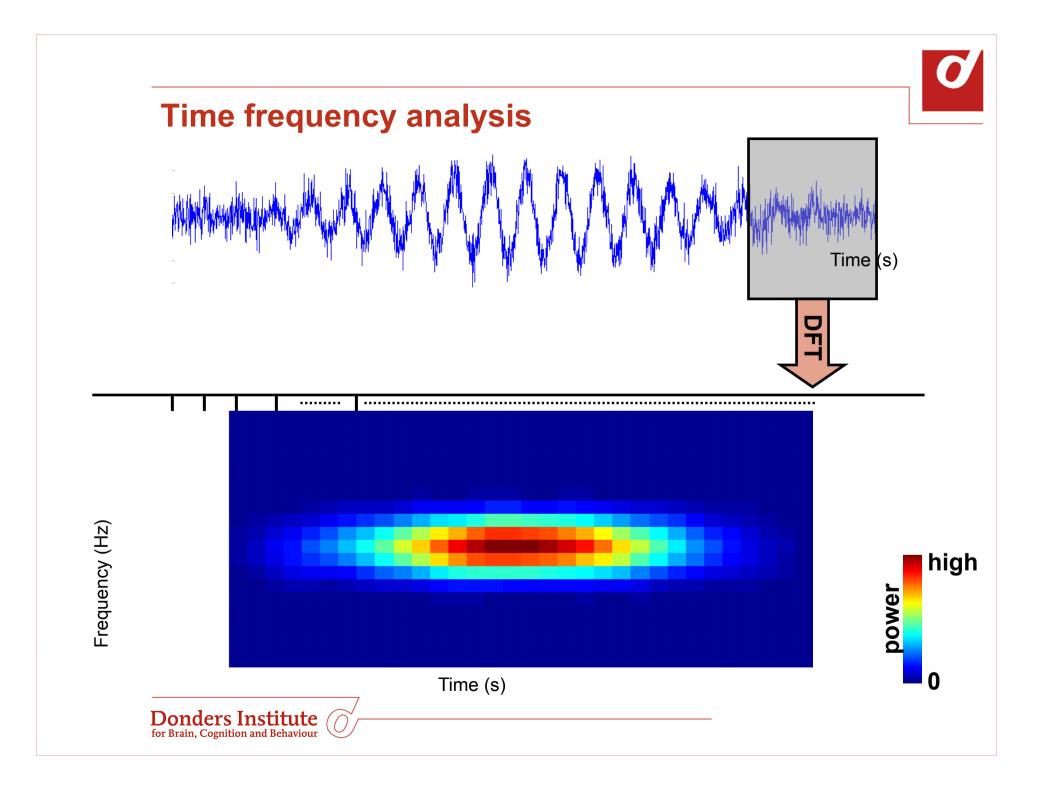


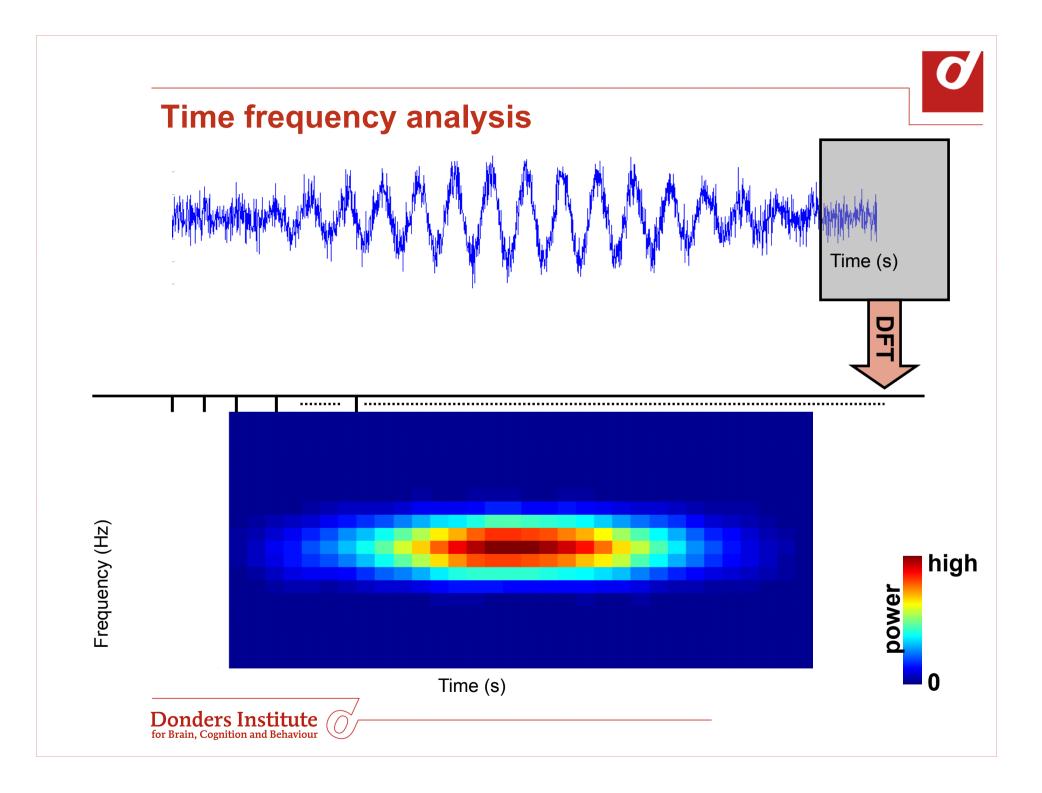




Frequency (Hz)

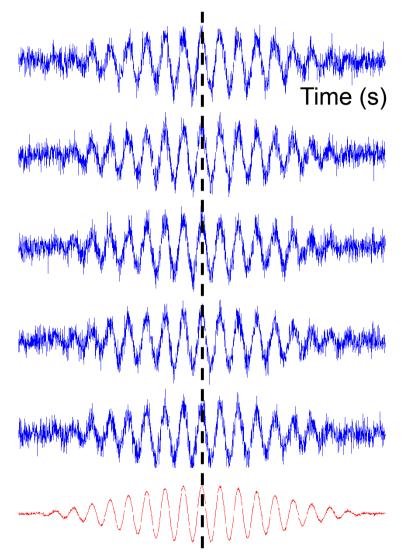
**Donders Institute** for Brain, Cognition and Behaviour

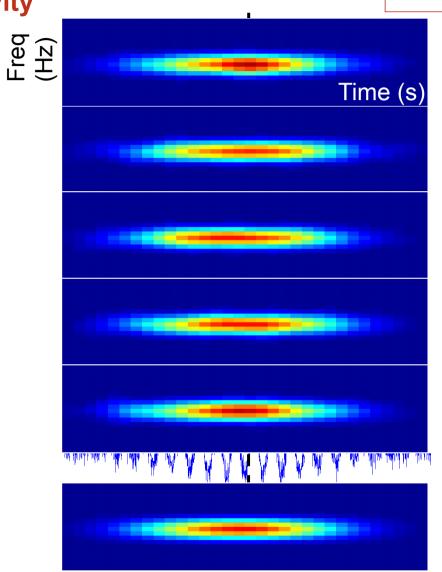






#### **Evoked versus induced activity**

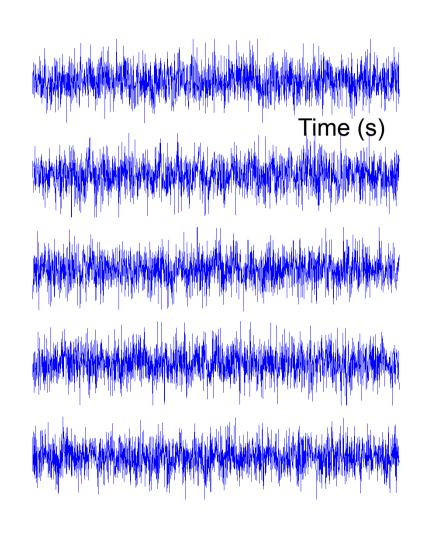


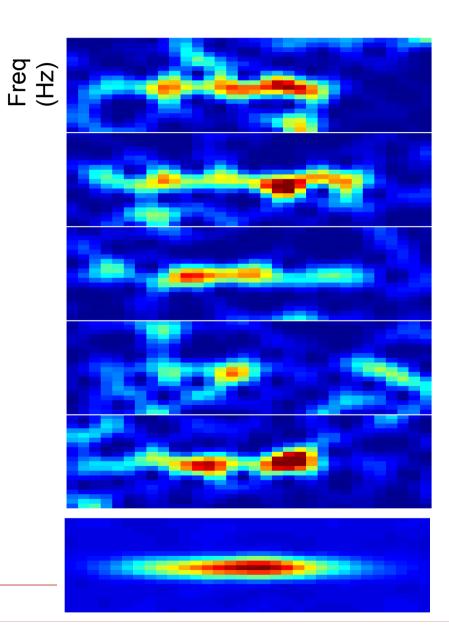






# Noisy signal -> many trials needed

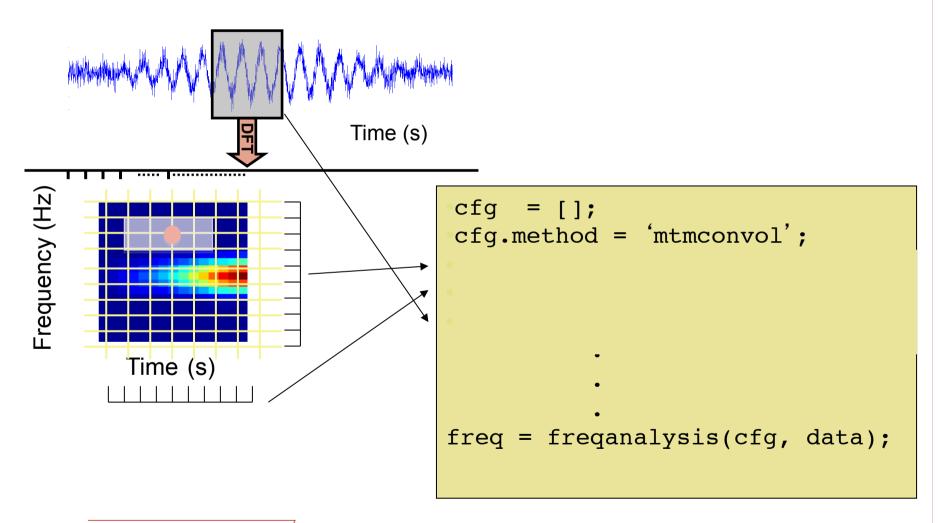








## The time-frequency plane

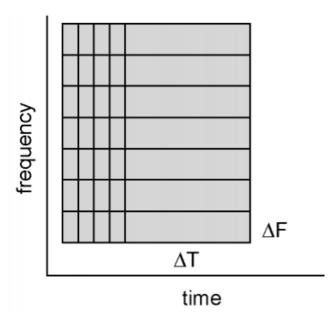






## The time-frequency plane

- Division is 'up to you'
- Depends on the phenomenon you want to investigate
  - Which frequency band?
  - Which time scale?



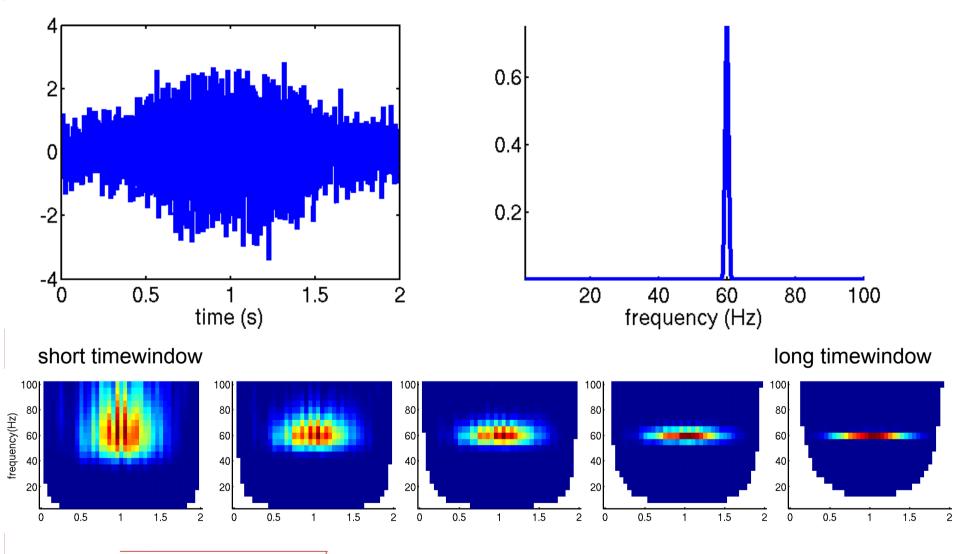
```
cfg = [];
cfg.method = 'mtmconvol';
cfg.foi = [2 4 ... 40];
cfg.toi = [0:0.050:1.0];
cfg.t_ftimwin = [0.5 0.5 ... 0.5];
cfg.tapsmofrq = [4 4 ... 4];

freq = freqanalysis(cfg, data);
```





### Time versus frequency resolution







## **Sub summary**

- Time frequency analysis
  - Fourier analysis on shorter sliding time window
- Evoked & Induced activity
- Time frequency resolution trade off





- Popular method to calculate time-frequency representations
- Is based on convolution of signal with a family of 'wavelets' which capture different frequency components in the signal
- Convolution ~ local correlation



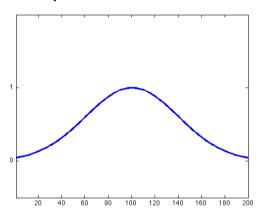


```
cfg = [];
cfg.method = 'wavelet';
freq=ft_freqanalysis(cfg, data);
```

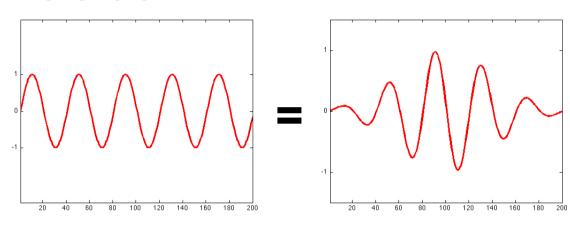


### **Wavelets**

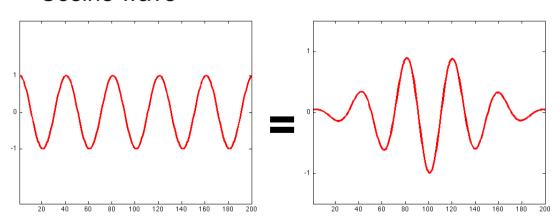
Taper



#### Sine wave

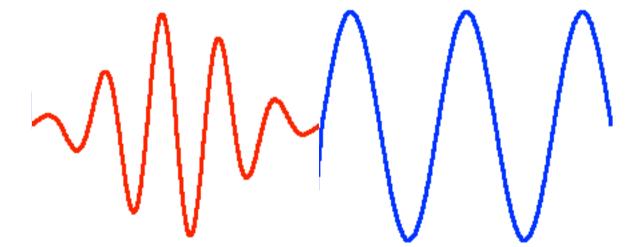


#### Cosine wave







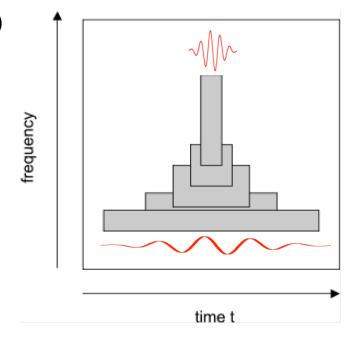








- Wavelet width determines time-frequency resolution
- Width function of frequency (often 5 cycles)
- 'Long' wavelet at low frequencies leads to relatively narrow frequency resolution but poor temporal resolution
- 'Short' wavelet at high frequencies leads to broad frequency resolution but more accurate temporal resolution







- Similar to Fourier analysis, but
  - Computationally slow
  - Tiles the time frequency plane in a particular way with few degrees of freedom

```
%time frequency analysis with
%multitapers
cfg = [];
cfg.method = 'mtmconvol';
cfq.toi = [0:0.05:1];
cfg.foi = [4 8 ... 80];
cfg.t ftimwin = [0.5 0.5 ... 0.5]; cfg.gwidth = 5;
cfg.tapsmofrq = [2 2 ... 10];
```

```
%time frequency analysis with
                                %wavelets
                                cfq = [];
                                cfg.method = 'wavelet';
                               cfg.toi = [0:0.05:1];
                          cfg.foi = [4 8 ... 80];
freq=ft freqanalysis(cfq, data); freq=ft freqanalysis(cfq, data);
```



#### **Summary**

Spectral analysis
Relation between time and frequency domains
Tapers
Time frequency analysis
Time vs frequency resolution
Wavelets

Hands-on: Time-frequency analysis of power
Hanning window
fixed and variable length.

Wavelets
Multi-tapers



