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Separating sources 

•  Use the temporal aspects of the data  
at the channel level  
– ERF latencies 
–  (ERF difference waves) 
– Filtering the time-series 
– Spectral decomposition 

•  Use the spatial aspects of the data 



Brain signals contain oscillatory activity 
at multiple frequencies 

Cohen, 1972 

Hoogenboom et al, 2006 



Outline 

•  Spectral analysis: going from time to frequency domain 
 
•  Issues with finite and discrete sampling 
 
•  Spectral leakage and (multi-)tapering 
 
•  Time-frequency analysis 



A background note on oscillations 

period 
amplitude 

phase 



Spectral analysis  

•  Deconstructing a time domain signal into its constituent  
oscillatory components, a.k.a. Fourier analysis 

•  Using simple oscillatory functions: cosines and sines 



Spectral decomposition: the principle 



Spectral decomposition: the power spectrum 



•  Deconstructing a time domain signal into its constituent 
oscillatory components, a.k.a. Fourier analysis 

•  Using simple oscillatory functions: cosines and sines 
•  Express signal as function of frequency, rather than time 
•  Concept: linear regression using oscillatory basis functions 

Spectral analysis 



Spectral analysis ~ regression 

•  Y = β x X 
•  X : set of basis functions 
•  βi  ∼ ‘goodness-of-fit’ of basis function i with data 
•  β for cosine and sine components for a given 

frequency map onto amplitude and phase 
estimate.  

•  Restriction: basis functions should be ‘orthogonal’ 
•  Consequence 1: frequencies not arbitrary -> 

integer amount of cycles should fit into N points. 
•  Consequence 2: N-point signal -> N basis 

functions 

βcos 

βsin 



Time-frequency relation 

•  Consequence 1: frequencies not arbitrary -> integer amount 
of cycles should fit into N points (of length T). 

•  The frequency resolution is determined by the length of the 
data segments (T) 

•  Rayleigh frequency = 1/T = Δf = frequency resolution 

Time window: 

0.2 s 

Frequencies: 

(0) 5 10 15 20 .. Hz 

Time window: 

1 s 

Frequencies: 

(0) 1 2 3 4 5 6 .. Hz 



Time-frequency relation 

•  Consequence 2: N-point signal -> N basis functions 
•  N basis functions -> N/2 frequencies 
•  The highest frequency that can be resolved depends  

on the sampling frequency F 
•  Nyquist frequency = F/2 

Sampling freq 400 Hz 

Time window 0.25 s 

Frequencies: 

(0) 4 8... 196 200 Hz 

Sampling freq 1 kHz  

Time window 1 s 

Frequencies: 

(0) 1 2 … 499 500 Hz 



•  Deconstructing a time domain signal into its constituent 
oscillatory components, a.k.a. Fourier analysis 

•  Using simple oscillatory functions: cosines and sines 
•  Express signal as function of frequency, rather than time 
•  Concept: linear regression using oscillatory basis functions 
•  Each oscillatory component has an amplitude and phase 
•  Discrete and finite sampling constrains the frequency axis 

Spectral analysis 



Goal and challenges 

•  Estimate the true oscillations from the observed data 
•  Limited time available for Fourier transform 
•  You are looking at the activity through a time restricting window 

•  This implicitly means that the data are ‘tapered’ with a boxcar 
•  Data are discretely sampled 



•  True oscillations in data at frequencies not sampled with Fourier 
transform spread their energy to the sampled frequencies 

•  Not tapering = applying a boxcar taper 
•  Each type of taper has a specific leakage profile    

Spectral leakage and tapering 

0 

1 



Spectral leakage 

sidelobes main lobe 



Tapering in spectral analysis 



Tapering in spectral analysis 



Tapering in spectral analysis 



•  True oscillations in data at frequencies not sampled with Fourier 
transform spread their energy to the sampled frequencies 

•  Not tapering = applying a boxcar taper 
•  Each type of taper has a specific leakage profile    

Spectral leakage and tapering 

sidelobes main lobe 



Multitapers 

•  Make use of more than one taper and combine their properties 
•  Used for smoothing in the frequency domain 
•  Instead of “smoothing” one can also say “controlled leakage” 



broadband activity 
between 60-90 Hz 

Hanning 
window 

2 Hz smoothing 
(7 tapers) 

5 Hz smoothing 
(19 tapers) 

10 Hz smoothing 
(39 tapers) 

2 s 

Multitapered spectral analysis 

Mitra & Pesaran, 1999, Biophys J 



Multitapered spectral analysis 



broadband activity 
between 60-90 Hz 

Hanning 
window 

2 Hz smoothing 
(7 tapers) 

5 Hz smoothing 
(19 tapers) 

10 Hz smoothing 
(39 tapers) 

2 s 

Multitapered spectral analysis 



Multitapers 

•  Multitapers are useful for reliable estimation of high frequency components 
•  Low frequency components are better estimated using a single (Hanning) taper 

%estimate low frequencies!
!
cfg  = [];!
cfg.method = ‘mtmfft’;!
cfg.foilim = [1 30];!
cfg.taper  = ‘hanning’;!
      .!
      .!
      .!
freq=ft_freqanalysis(cfg, data);!
 

%estimate high frequencies!
!
cfg  = [];!
cfg.method    = ‘mtmfft’;!
cfg.foilim    = [30 120];!
cfg.taper     = ‘dpss’;!
cfg.tapsmofrq = 8;!
      .!
      .!
freq=ft_freqanalysis(cfg, data);!
 



Sub summary 

•  Spectral analysis  
– Decompose signal into its constituent oscillatory components 
– Focused on ‘stationary’ power 

•  Tapers 
– Boxcar, Hanning, Gaussian 

•  Multitapers 
– Control spectral leakage/smoothing 



Time-frequency analysis 

cfg  = [];!
cfg.method = ‘…’;!
      .!
      .!
      .!
freq = ft_freqanalysis(cfg, data); 
 
 
 
 

‘mtmconvol’;!

•  Typically, brain signals are not ‘stationary’ 
•  Divide the measured signal in shorter time segments and apply 

Fourier analysis to each signal segment 
•  Everything we saw so far with respect to frequency resolution 

applies here as well 



Time frequency analysis 

Time (s) 



Time frequency analysis 
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Time frequency analysis 
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Time frequency analysis 
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Time frequency analysis 
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Time frequency analysis 
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Time frequency analysis 
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Time frequency analysis 
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Time frequency analysis 
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Evoked versus induced activity 
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Noisy signal -> many trials needed 
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The time-frequency plane 
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• cfg  = [];!
• cfg.method = ‘mtmconvol’;!
• cfg.foi    = [2 4 … 40];!
• cfg.toi    = [0:0.050:1.0];!
• cfg.t_ftimwin = [0.5 0.5 … 0.5];!
          .!
          .!
          . !
freq = freqanalysis(cfg, data);!
 
 



The time-frequency plane 

•  Division is ‘up to you’ 
•  Depends on the phenomenon 

you want to investigate 
–  Which frequency band? 
–  Which time scale? 

cfg  = [];!
cfg.method    = ‘mtmconvol’;!
cfg.foi       = [2 4 … 40];!
cfg.toi       = [0:0.050:1.0];!
cfg.t_ftimwin = [0.5 0.5 … 0.5];!
cfg.tapsmofrq = [4 4 … 4];!
          .!
          . !
freq = freqanalysis(cfg, data); 



Time versus frequency resolution 

short timewindow long timewindow 



Sub summary 

•  Time frequency analysis 
– Fourier analysis on shorter sliding time window 

•  Evoked & Induced activity 
•  Time frequency resolution trade off 



Wavelet analysis 

•  Popular method to calculate time-frequency representations 
•  Is based on convolution of signal with a family of ‘wavelets’ which 

capture different frequency components in the signal 
•  Convolution ~ local correlation  



cfg  = [];!
cfg.method = ‘…’;!
      .!
      .!
      .!
freq=ft_freqanalysis(cfg, data);!
!
 
 
 
 
 

‘wavelet’;!

Wavelet analysis 



Wavelets 

Taper 

Sine wave 

Cosine wave 
X 

= 

= 





Wavelet analysis 

•  Wavelet width determines time-frequency 
resolution 

•  Width function of frequency (often 5 cycles) 
•  ‘Long’ wavelet at low frequencies leads to 

relatively narrow frequency resolution but 
poor temporal resolution 

•  ‘Short’ wavelet at high frequencies leads 
to broad frequency resolution but more 
accurate temporal resolution 



Wavelet analysis 
•  Similar to Fourier analysis, but 

-  Computationally slow 
-  Tiles the time frequency plane in a particular way with few degrees of freedom 

%time frequency analysis with!
%multitapers!
!
cfg  = [];!
cfg.method    = ‘mtmconvol’;!
cfg.toi       = [0:0.05:1];!
cfg.foi       = [4 8 … 80];!
cfg.t_ftimwin = [0.5 0.5 … 0.5];!
cfg.tapsmofrq = [2 2 … 10];!
      .!
      .!
freq=ft_freqanalysis(cfg, data); 

%time frequency analysis with!
%wavelets!
!
cfg  = [];!
cfg.method = ‘wavelet’;!
cfg.toi    = [0:0.05:1];!
cfg.foi    = [4 8 … 80];!
cfg.gwidth = 5;!
      .!
      .!
      .!
freq=ft_freqanalysis(cfg, data);!
 



Summary 

Spectral analysis 
Relation between time and frequency domains 
Tapers 

Time frequency analysis 
Time vs frequency resolution 

Wavelets 
 

 
Hands-on: Time-frequency analysis of power 

Hanning window  
fixed and variable lengthva 

Wavelets 
Multi-tapers 




