

Fundamentals of the analysis of neuronal oscillations

Nietzsche Lam

Donders Institute for Brain, Cognition and Behaviour Radboud University Nijmegen, The Netherlands

Max Planck Institute for Psycholinguistics

Separating sources

- Use the temporal aspects of the data at the channel level
 - ERF latencies
 - (ERF difference waves)
 - Filtering the time-series
 - Spectral decomposition
- Use the spatial aspects of the data

Brain signals contain oscillatory activity at multiple frequencies

Hoogenboom et al, 2006

Outline

- Spectral analysis: going from time to frequency domain
- Issues with finite and discrete sampling
- Spectral leakage and (multi-)tapering
- Time-frequency analysis

A background note on oscillations

Spectral analysis

- Deconstructing a time domain signal into its constituent oscillatory components, a.k.a. Fourier analysis
- Using simple oscillatory functions: cosines and sines

Spectral decomposition: the principle

Spectral decomposition: the power spectrum

Spectral analysis

- Deconstructing a time domain signal into its constituent oscillatory components, a.k.a. Fourier analysis
- Using simple oscillatory functions: cosines and sines
- Express signal as function of frequency, rather than time
- Concept: linear regression using oscillatory basis functions

Spectral analysis ~ regression

- $\mathbf{Y} = \beta \times \mathbf{X}$
- X : set of basis functions
- β_i ~ 'goodness-of-fit' of basis function *i* with data
- β for cosine and sine components for a given frequency map onto amplitude and phase estimate.
- Restriction: basis functions should be 'orthogonal
- Consequence 1: frequencies not arbitrary ->
 integer amount of cycles should fit into N points.
- Consequence 2: N-point signal -> N basis functions

Time-frequency relation

- Consequence 1: frequencies not arbitrary -> integer amount of cycles should fit into N points (of length T).
- The frequency resolution is determined by the length of the data segments (T)
- Rayleigh frequency = $1/T = \Delta f$ = frequency resolution

Time window:

1 s

Frequencies:

(0) 1 2 3 4 5 6 .. Hz

Time window:

0.2 s

Frequencies:

(0) 5 10 15 20 .. Hz

Time-frequency relation

- Consequence 2: N-point signal -> N basis functions
- N basis functions -> N/2 frequencies
- The highest frequency that can be resolved depends on the sampling frequency F
- Nyquist frequency = F/2

Sampling freq 1 kHz

Time window 1 s

Frequencies:

(0) 1 2 ... 499 500 Hz

Sampling freq 400 Hz

Time window 0.25 s

Frequencies:

(0) 4 8... 196 200 Hz

Spectral analysis

- Deconstructing a time domain signal into its constituent oscillatory components, a.k.a. Fourier analysis
- Using simple oscillatory functions: cosines and sines
- Express signal as function of frequency, rather than time
- Concept: linear regression using oscillatory basis functions
- Each oscillatory component has an amplitude and phase
- Discrete and finite sampling constrains the frequency axis

Spectral leakage and tapering

- True oscillations in data at frequencies not sampled with Fourier transform spread their energy to the sampled frequencies
- Not tapering = applying a boxcar taper
- Each type of taper has a specific leakage profile

Spectral leakage

Tapering in spectral analysis

Tapering in spectral analysis

Tapering in spectral analysis

Spectral leakage and tapering

- True oscillations in data at frequencies not sampled with Fourier transform spread their energy to the sampled frequencies
- Not tapering = applying a boxcar taper
- Each type of taper has a specific leakage profile

Multitapers

- Make use of more than one taper and combine their properties
- Used for smoothing in the frequency domain
- Instead of "smoothing" one can also say "controlled leakage"

Multitapered spectral analysis

Donders Institute for Brain, Cognition and Behaviour

Mitra & Pesaran, 1999, Biophys

Multitapered spectral analysis

Multitapered spectral analysis

Multitapers

- Multitapers are useful for reliable estimation of high frequency components
- Low frequency components are better estimated using a single (Hanning) taper

```
%estimate low frequencies

cfg = [];
cfg.method = 'mtmfft';
cfg.foilim = [1 30];
cfg.taper = 'hanning';
.
freq=ft_freqanalysis(cfg, data);
%estimate high frequencies

cfg = [];
cfg.method = 'mtmfft';
cfg.foilim = [30 120];
cfg.taper = 'dpss';
cfg.tapsmofrq = 8;
.
freq=ft_freqanalysis(cfg, data);
```


Sub summary

- Spectral analysis
 - Decompose signal into its constituent oscillatory components
 - Focused on 'stationary' power
- Tapers
 - Boxcar, Hanning, Gaussian
- Multitapers
 - Control spectral leakage/smoothing

Time-frequency analysis

- Typically, brain signals are not 'stationary'
- Divide the measured signal in shorter time segments and apply Fourier analysis to each signal segment
- Everything we saw so far with respect to frequency resolution applies here as well

```
cfg = [];
cfg.method = 'mtmconvol';

.
freq = ft_freqanalysis(cfg, data);
```


Time frequency analysis

Frequency (Hz)

Time (s)

Frequency (Hz)

Time (s)

Frequency (Hz)

Donders Institute for Brain, Cognition and Behaviour

Evoked versus induced activity

Noisy signal -> many trials needed

The time-frequency plane

The time-frequency plane

- Division is 'up to you'
- Depends on the phenomenon you want to investigate
 - Which frequency band?
 - Which time scale?


```
cfg = [];
cfg.method = 'mtmconvol';
cfg.foi = [2 4 ... 40];
cfg.toi = [0:0.050:1.0];
cfg.t_ftimwin = [0.5 0.5 ... 0.5];
cfg.tapsmofrq = [4 4 ... 4];

freq = freqanalysis(cfg, data);
```


Time versus frequency resolution

Sub summary

- Time frequency analysis
 - Fourier analysis on shorter sliding time window
- Evoked & Induced activity
- Time frequency resolution trade off

- Popular method to calculate time-frequency representations
- Is based on convolution of signal with a family of 'wavelets' which capture different frequency components in the signal
- Convolution ~ local correlation


```
cfg = [];
cfg.method = 'wavelet';
freq=ft_freqanalysis(cfg, data);
```


Wavelets

Taper

Sine wave

Cosine wave

- Wavelet width determines time-frequency resolution
- Width function of frequency (often 5 cycles)
- 'Long' wavelet at low frequencies leads to relatively narrow frequency resolution but poor temporal resolution
- 'Short' wavelet at high frequencies leads to broad frequency resolution but more accurate temporal resolution

- Similar to Fourier analysis, but
 - Computationally slow
 - Tiles the time frequency plane in a particular way with few degrees of freedom

```
%time frequency analysis with
%multitapers
cfg = [];
cfg.method = 'mtmconvol';
cfq.toi = [0:0.05:1];
cfg.foi = [4 8 ... 80];
cfg.t ftimwin = [0.5 0.5 ... 0.5]; cfg.gwidth = 5;
cfg.tapsmofrq = [2 2 ... 10];
```

```
%time frequency analysis with
                                %wavelets
                                cfq = [];
                                cfg.method = 'wavelet';
                               cfg.toi = [0:0.05:1];
                          cfg.foi = [4 8 ... 80];
freq=ft freqanalysis(cfq, data); freq=ft freqanalysis(cfq, data);
```


Summary

Spectral analysis
Relation between time and frequency domains
Tapers
Time frequency analysis
Time vs frequency resolution
Wavelets

Hands-on: Time-frequency analysis of power
Hanning window
fixed and variable length.

Wavelets
Multi-tapers

