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M/EEG	signal	characteris6cs	considered	during	analysis	

6mecourse	of	ac6vity		
->	ERP	

	
spectral	characteris6cs		

->	power	spectrum	
	
temporal	changes	in	power		

->	6me-frequency	response	(TFR)	
	
spa6al	distribu6on	of	ac6vity	over	the	head		

->	source	reconstruc6on	



Superposi6on	of	source	ac6vity	



Separa6ng	ac6vity	of	different	sources	(and	noise)	

Use	the	temporal	aspects	of	the	data		
at	the	channel	level		
ERF	latencies	
ERF	difference	waves	
Filtering	the	6me-series	
Spectral	decomposi6on	
	

Use	the	spa6al	aspects	of	the	data	
Volume	conduc6on	model	of	head	
Es6mate	source	model	parameters	
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Brain	signals	contain	oscillatory	ac6vity	
at	mul6ple	frequencies	

Cohen,	1972	

Hoogenboom	et	al,	2006	



Outline	

Spectral	analysis:	going	from	6me	to	frequency	domain	
	
Issues	with	finite	and	discrete	sampling	
	
Spectral	leakage	and	(mul6-)tapering	
	
Time-frequency	analysis	



A	background	note	on	oscilla6ons	

period	
amplitude	

phase	



Spectral	analysis		

Deconstruc6ng	a	6me	domain	signal	into	its	cons6tuent		
oscillatory	components,	a.k.a.	Fourier	analysis	

Using	simple	oscillatory	func6ons:	cosines	and	sines	



Spectral	decomposi6on:	the	principle	



Spectral	decomposi6on:	the	power	spectrum	



Deconstruc6ng	a	6me	domain	signal	into	its	cons6tuent	
oscillatory	components,	a.k.a.	Fourier	analysis	

Using	simple	oscillatory	func6ons:	cosines	and	sines	
Express	signal	as	func6on	of	frequency,	rather	than	6me	
Concept:	linear	regression	using	oscillatory	basis	func6ons	

Spectral	analysis	



Spectral	analysis	~	GLM	

Y	=	β	*	X	
X			set	of	basis	func6ons	
βi  contribu6on	of	basis	func6on	i	to	the	data.	
β	for	cosine	and	sine	components	for	a	given	frequency	

map	onto	amplitude	and	phase	es6mate.		
	
Restric6on:	basis	func6ons	should	be	‘orthogonal’	
	
Consequence	1:	frequencies	not	arbitrary		

->	integer	amount	of	cycles	should	fit	into	N	points.	
	
Consequence	2:	N-point	signal		

->	N	basis	func6ons	

βcos	

βsin	



Time-frequency	rela6on	

Consequence	1:	frequencies	not	arbitrary		
->	integer	amount	of	cycles	should	fit	into	N	samples	of	Δt	each.	

The	frequency	resolu6on	is	determined	by	the	total	length	of		
the	data	segments	(T)	

Rayleigh	frequency	=	1/T	=	Δf	=	frequency	resolu6on	
	

Time	window:	

0.2	s	

Frequencies:	

(0)	5	10	15	20	..	Hz	

Time	window:	

1	s	

Frequencies:	

(0)	1	2	3	4	5	6	..	Hz	



Time-frequency	rela6on	

Consequence	2:	N-point	signal		
->	N	basis	func6ons	

N	basis	func6ons	->	N/2	frequencies	
The	highest	frequency	that	can	be	resolved	depends		

on	the	sampling	frequency	F	
Nyquist	frequency	=	F/2	

Sampling	freq	400	Hz	

Time	window	0.25	s	

Frequencies:	

(0)	4	8...	196	200	Hz	

Sampling	freq	1	kHz		

Time	window	1	s	

Frequencies:	

(0)	1	2	…	499	500	Hz	



Deconstruc6ng	a	6me	domain	signal	into	its	cons6tuent	
oscillatory	components,	a.k.a.	Fourier	analysis	

Using	simple	oscillatory	func6ons:	cosines	and	sines	
Express	signal	as	func6on	of	frequency,	rather	than	6me	
Concept:	linear	regression	using	oscillatory	basis	func6ons	
Each	oscillatory	component	has	an	amplitude	and	phase	
Discrete	and	finite	sampling	constrains	the	frequency	axis	

Spectral	analysis	



Goal	and	challenges	
•  Es6mate	the	true	oscilla6ons	from	the	observed	data	
•  Limited	6me	available	for	Fourier	transform	
•  You	are	looking	at	the	ac6vity	through		

a	6me	restricted	window	

	



Goal	and	challenges	
•  Es6mate	the	true	oscilla6ons	from	the	observed	data	
•  Limited	6me	available	for	Fourier	transform	
•  You	are	looking	at	the	ac6vity	through		

a	6me	restricted	window	

•  This	implicitly	means	that	the	data		
are	‘tapered’	with	a	boxcar	

•  Furthermore,	data	are	discretely		
sampled	



•  True	oscilla6ons	in	data	at	frequencies	not	sampled	with	
Fourier	transform	spread	their	energy	to	the	sampled	
frequencies	

•  Not	tapering	is	equal	to	applying	a	“boxcar”	taper	
•  Each	type	of	taper	has	a	specific	leakage	profile				

Spectral	leakage	and	tapering	

0	

1	



Spectral	leakage	

sidelobes	main	lobe	



Tapering	in	spectral	analysis	
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Mul6tapers	

Make	use	of	more	than	one	taper	and	combine		
their	proper6es	

	
Used	for	smoothing	in	the	frequency	domain	
	
Instead	of	“smoothing”	one	can	also	say	“controlled	leakage”	
	



broadband	ac/vity	between	
60-90	Hz	

Hanning	window	

2	Hz	smoothing	(7	
tapers)	

5	Hz	smoothing	
(19	tapers)	

10	Hz	smoothing	
(39	tapers)	

2	s	

Mul6tapered	spectral	analysis	

Mitra	&	Pesaran,	1999,	Biophys	J	



Mul6tapered	spectral	analysis	



Mul6tapers	

Mul6tapers	are	useful	for	reliable	es6ma6on	of	high	
frequency	components	

Low	frequency	components	are	beber	es6mated	using	a	
single	(Hanning)	taper	

	%estimate low frequencies

cfg  = [];
cfg.method = ‘mtmfft’;
cfg.foilim = [1 30];
cfg.taper  = ‘hanning’;
      .
      .
      .
freq=ft_freqanalysis(cfg, data);
	

%estimate high frequencies

cfg  = [];
cfg.method    = ‘mtmfft’;
cfg.foilim    = [30 120];
cfg.taper     = ‘dpss’;
cfg.tapsmofrq = 8;
      .
      .
freq=ft_freqanalysis(cfg, data);
	



Interim	summary	

Spectral	analysis		
Decompose	signal	into	its	cons6tuent		
oscillatory	components	

Focused	on	‘sta6onary’	power	

Tapers	
Boxcar,	Hanning,	Gaussian	

Mul6tapers	
Control	spectral	leakage/smoothing	

	



Time-frequency	analysis	

cfg  = [];
cfg.method = ‘…’;
      .
      .
      .
freq = ft_freqanalysis(cfg, data);	
	
	
	
	

‘mtmconvol’;

Typically,	brain	signals	are	not	‘sta6onary’	
•  Divide	the	measured	signal	in	shorter	6me	segments		

and	apply	Fourier	analysis	to	each	signal	segment	
•  Everything	we	saw	so	far	with	respect	to	frequency	

resolu6on	applies	here	as	well	



Time	frequency	analysis	
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Evoked	versus	induced	ac6vity	
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Noisy	signal	->	many	trials	needed	
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The	6me-frequency	plane	
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• cfg = [];
• cfg.method = ‘mtmconvol’;
• cfg.foi    = [2 4 … 40];
• cfg.toi    = [0:0.050:1.0];
• cfg.t_ftimwin = [0.5 0.5 … 0.5];
          .
          .
          . 
freq = ft_freqanalysis(cfg,data);
	
	



The	6me-frequency	plane	

The	division	is	‘up	to	you’	
Depends	on	the	phenomenon	

you	want	to	inves6gate:	
-	Which	frequency	band?	
-	Which	6me	scale?	

cfg = [];
cfg.method    = ‘mtmconvol’;
cfg.foi       = [2 4 … 40];
cfg.toi       = [0:0.050:1.0];
cfg.t_ftimwin = [0.5 0.5 … 0.5];
cfg.tapsmofrq = [ 4   4  …  4 ];
          .
          . 
freq = ft_freqanalysis(cfg,data);	



Time	versus	frequency	resolu6on	

short	6mewindow	 long	6mewindow	



Interim	summary	

Time	frequency	analysis	
Fourier	analysis	on	shorter	sliding	6me	window	

Evoked	&	Induced	ac6vity	
Time	frequency	resolu6on	trade	off	
	



Wavelet	analysis	

Popular	method	to	calculate	6me-frequency	
representa6ons	

Is	based	on	convolu6on	of	signal	with	a	family	of	
‘wavelets’	which	capture	different	frequency	
components	in	the	signal	

Convolu6on	~	local	correla6on		



cfg  = [];
cfg.method = ‘…’;
      .
      .
      .
freq=ft_freqanalysis(cfg, data);

	
	
	
	
	

‘wavelet’;

Wavelet	analysis	



Wavelets	

Taper	

Sine	wave	

Cosine	wave	
X	

=	

=	





Wavelet	analysis	

Wavelet	width	determines	the		
6me-frequency	resolu6on	

Width	is	a	func6on	of	frequency	
(oien	5	cycles)	

‘Long’	wavelet	at	low	frequencies	
leads	to	rela6vely	narrow	
frequency	resolu6on	but	poor	
temporal	resolu6on	

‘Short’	wavelet	at	high	frequencies	
leads	to	broad	frequency	
resolu6on	but	more	accurate	
temporal	resolu6on	



Wavelet	analysis	

Similar	to	Fourier	analysis,	but	
Can	be	computa6onally	slower	
Tiles	the	6me	frequency	plane	in	a	par6cular	way		

with	fewer	degrees	of	freedom	

%time frequency analysis with
%multitapers

cfg  = [];
cfg.method    = ‘mtmconvol’;
cfg.toi       = [0:0.05:1];
cfg.foi       = [ 4   8  …  80];
cfg.t_ftimwin = [0.5 0.5 … 0.5];
cfg.tapsmofrq = [ 2   2  …  10];
      .
      .
freq=ft_freqanalysis(cfg, data);	

%time frequency analysis with
%wavelets

cfg  = [];
cfg.method = ‘wavelet’;
cfg.toi    = [0:0.05:1];
cfg.foi    = [4 8 … 80];
cfg.width  = 5;
      .
      .
      .
freq=ft_freqanalysis(cfg, data);
	



Summary	

Spectral	analysis	
Rela6on	between	6me	and	frequency	domains	
Tapers	

Time	frequency	analysis	
Time	vs	frequency	resolu6on	

Wavelets	
	

	Coming	up:	hands-on	
Time-frequency	analysis	

Different	methods	

Parameter	tweaking	

Power	versus	baseline	

Visualiza6on	




