

Radboud University

Non-parametric statistical testing with clusters

Central Institute of Mental Health, Mannheim, Germany

Talk outline

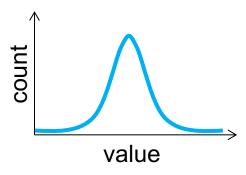
Inferential statistics
Channel-level statistics
parametric
non-parametric
clustering
Source-level statistics

Inferential parametric statistics

You make N observation and want to find whether some hypothesis H1 is true

Step 1: Gathering data

Observation	Value
0	2.5
1	-3.2
	•
N	2.4

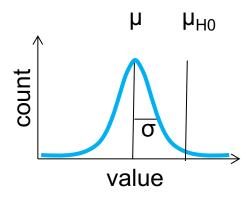


Inferential parametric statistics

You make N observation and want to find whether some hypothesis H1 is true

Step 2: Statistical testing

Observation	Value
0	2.5
1	-3.2
· ·	
N	2.4



Determine probability of t under H0

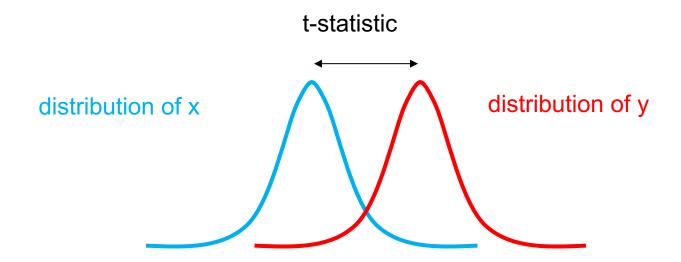
$$t = \frac{\mu - \mu_{H0}}{\sigma / \sqrt{N}}$$

If t sufficiently unlikely, reject H0

Inferential parametric statistics

Observations **Observations** in condition 1: in condition 2:

 $\{x1, x2, x3, x4, ...\}$ $\{y1, y2, y3, y4, ...\}$

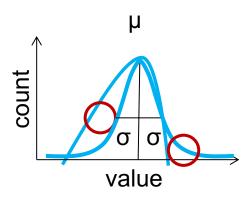


Parametric statistical testing

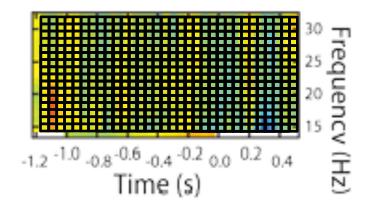
You make N observation and want to find whether some hypothesis H1 is true.

The first problem is that this requires a *known distribution* of the test statistic.

Observation	Value
0	2.5
1	-3.2
N	2.4
• •	



The second problem is that of multiple comparisons



16 *30 time-frequency tiles, i.e. 480 comparisons.

t-test with $\alpha = 0.05$ (chance of false alarm rate) for one test

Chance of one false alarm in 480 tests: 99.99...%

Or: 480*0.05 = 24 false alarms expected

The multiple comparison problem

Whole-brain analysis

306 channels

100 timepoints

50 frequencies

1.530.000 statistical tests

5% chance of false alarm in every test

76.500 false alarms

Solutions to control the FWER

Bonferroni correction

Use the false discovery rate

Use a Monte Carlo approximation of the randomization distribution of the maximum statistic

```
cfg = [];
cfg.method = 'analytic'
cfg.correctm = 'bonferroni'
ERPstats = ft_timelockstatistics(cfg, ERP);
```

```
cfg = [];
cfg.method = 'analytic'
cfg.correctm = 'fdr'
ERPstats = ft_timelockstatistics(cfg, ERP);
```

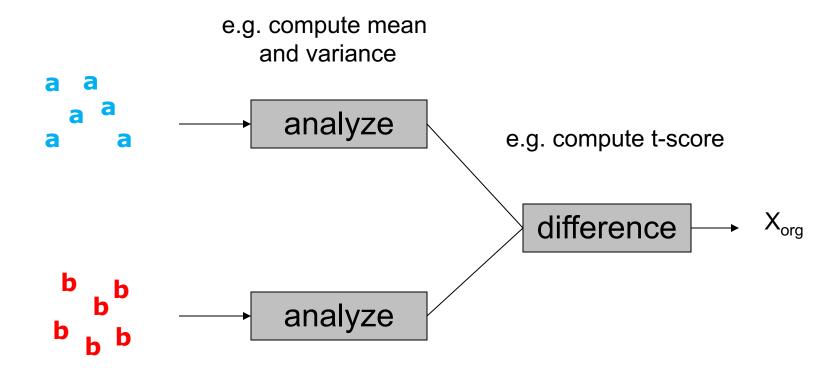
```
cfg = [];
cfg.method = 'montecarlo'
cfg.correctm = 'max'
TFRstats = ft_freqstatistics(cfg, TFR);
```

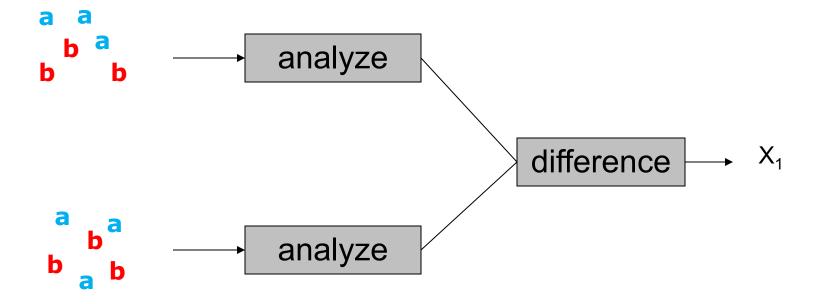
Randomization test: general principle

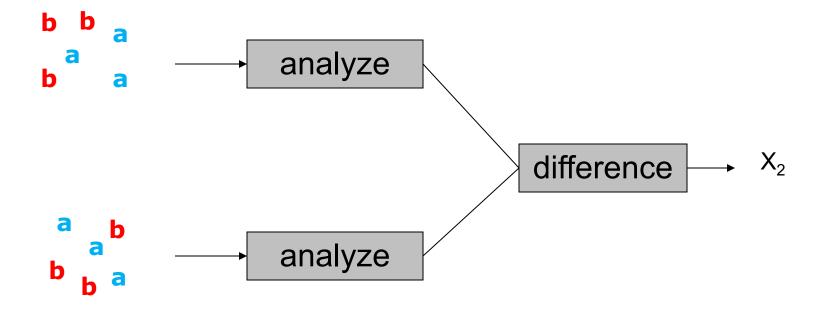
- Independent variable: condition
- Dependent variable: data

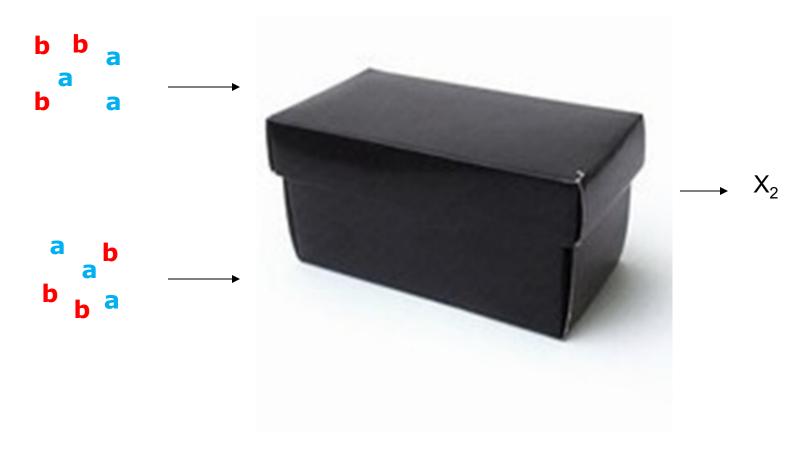
HO: the data is **independent** from the condition in which it was observed

The data in the two conditions is **not** different

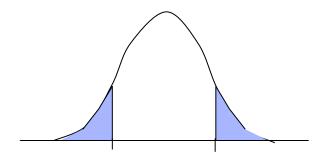








Distribution of "x" can take any shape



Non-parametric statistics

Randomization of independent variable

Hypothesis is about data, not about the specific parameter

Randomization distribution of the statistic of interest "x" is approximated using Monte-Carlo approach

H0 is tested by comparing the observed statistic against the randomization distribution

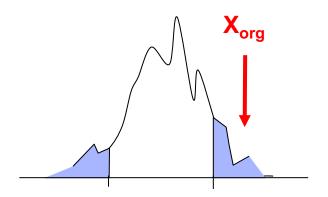
Avoid the multiple comparison problem

The statistic "x" can be anything

Rather than testing everything, only test the most extreme observation (i.e. the max statistic)

Compute the randomization distribution for the most extreme statistic

Note that often we compute two extrema, one for each tail



Increasing the sensitivity

Conventional is univariate parametric

Our approach is to consider the data

Many channels, timepoints, frequencies

Massive univariate

Multiple comparison problem

There is quite some structure in the data

Increasing the sensitivity

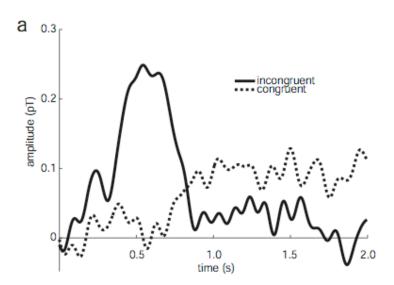
channel/time/frequency points are not independent

neighbouring channel/time/frequency points are expected to show similar behaviour

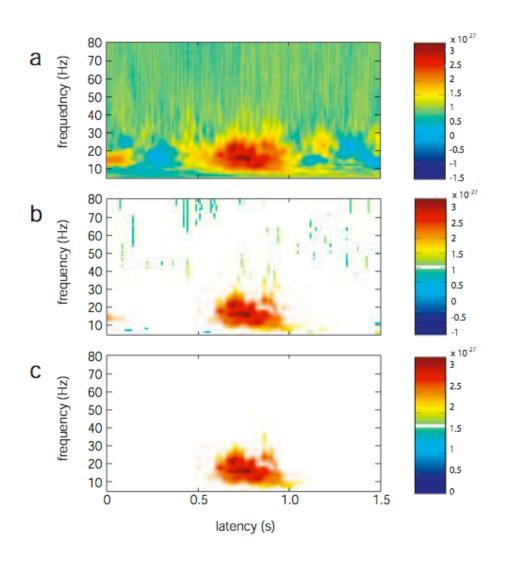
combine neighbouring samples into clusters -> "accumulate the evidence" = cluster-based statistics

avoid the MCP by comparing the largest observed cluster versus the randomization distribution of the largest clusters

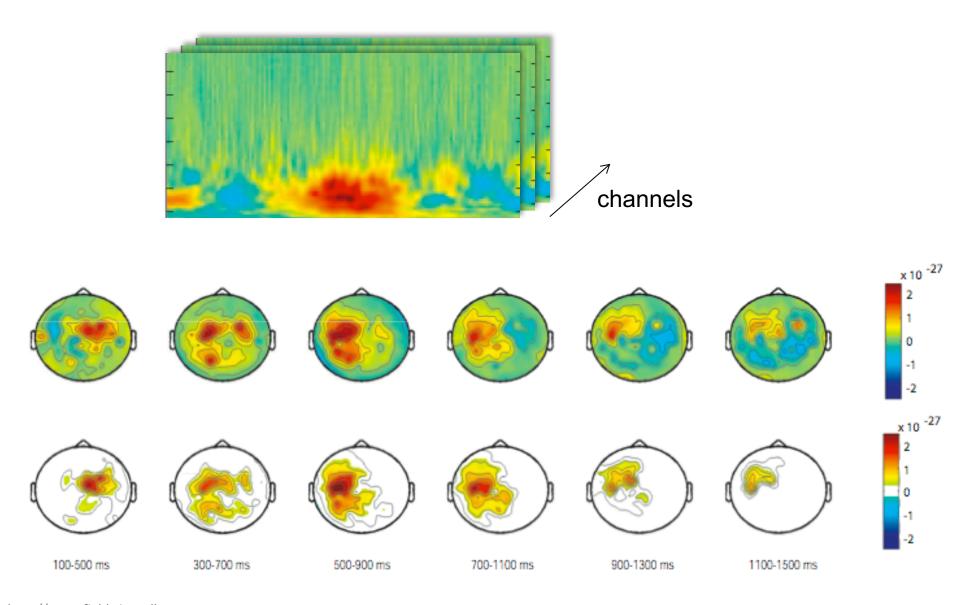
Clustering in time



Clustering in time and frequency



Clustering in time, frequency and space



Toy example

Toy example: Original observation

null hypothesis: condition A = condition B

		^
$I \cdot \wedge \wedge \wedge$	lition	/\
		Δ
\		$\overline{}$
\mathbf{O}		, ,

S1_a

S2_a

S3_a

S4_a

S5_a

S6_a

S7_a

S8_a

S9_a

S10_a

Condition B

S1_b

S2_b

S3_b

S4_b

S5_b

S6_b

S7_b

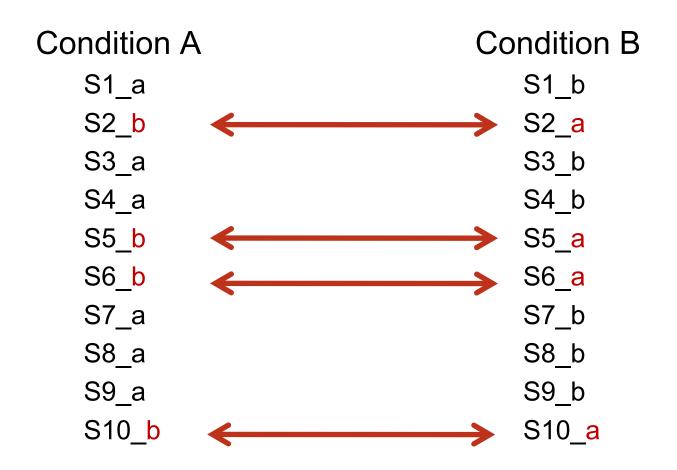
S8_b

S9_b

S10_b

Toy example: 1st permutation

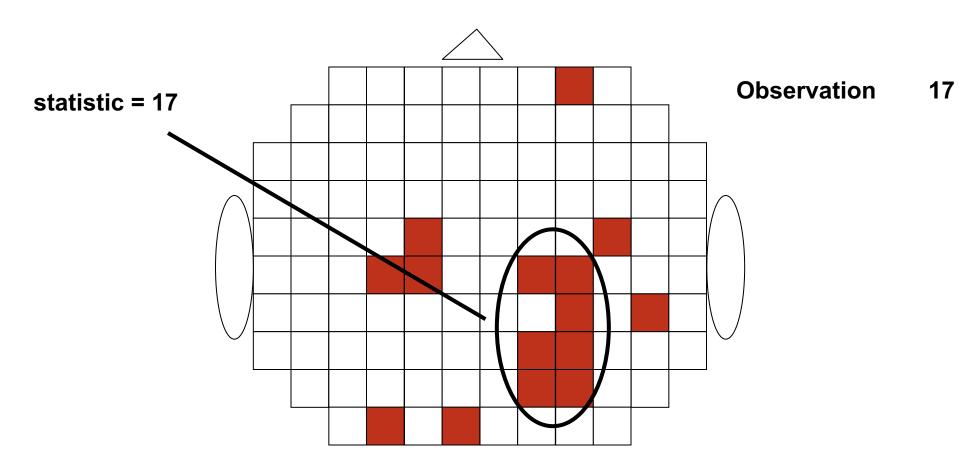
null hypothesis: condition A = condition B



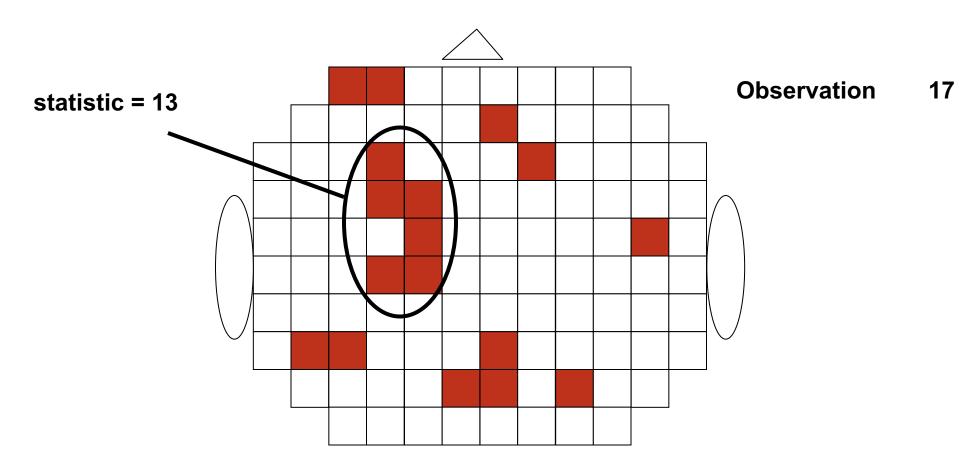
Toy example: 2nd permutation

null hypothesis: condition A = condition B

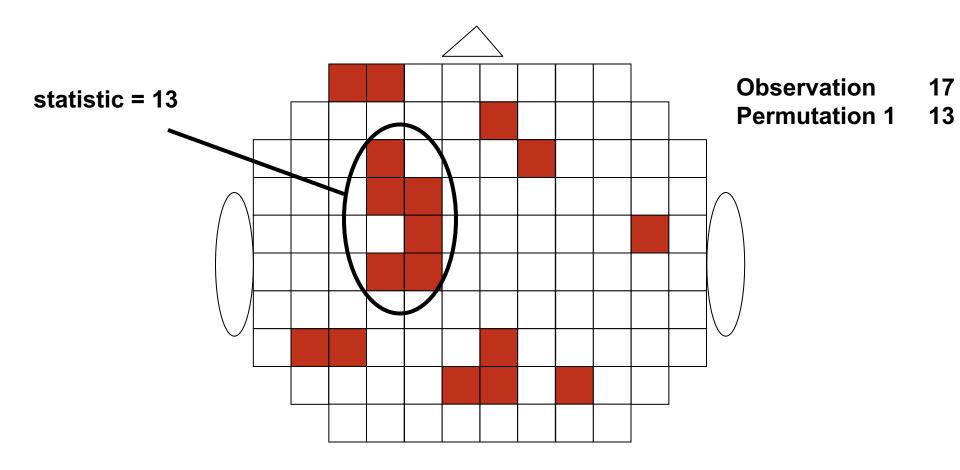
Toy example: Original observation



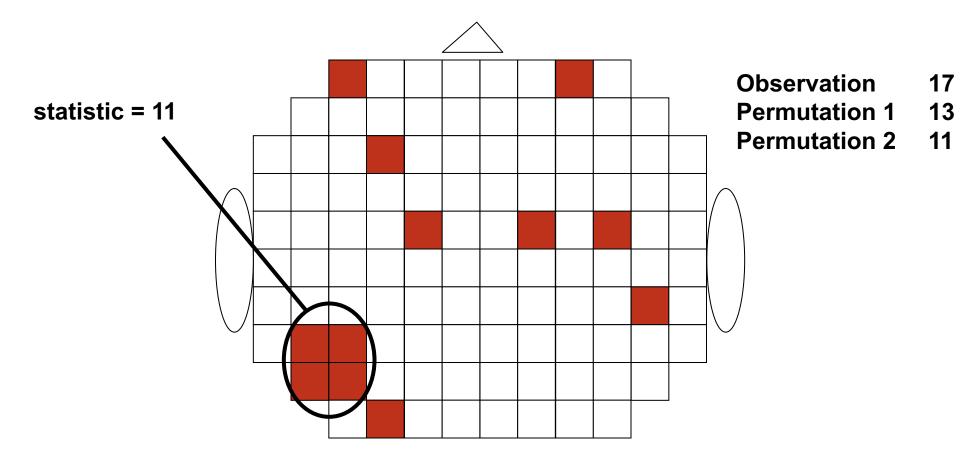
Toy example: 1st permutation



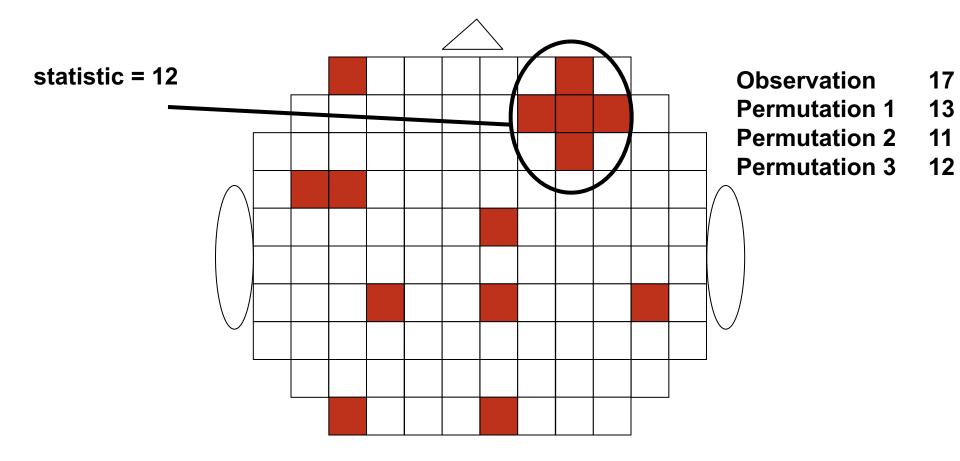
Toy example: 1st permutation



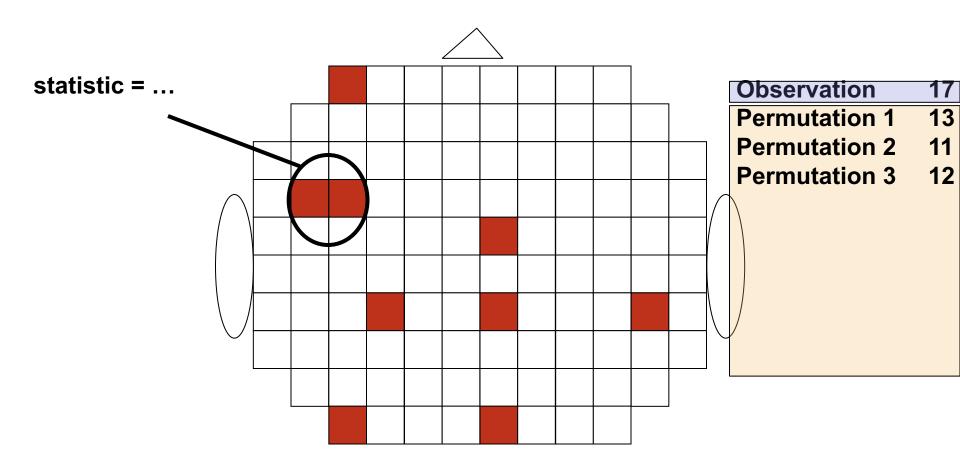
Toy example: 2nd permutation



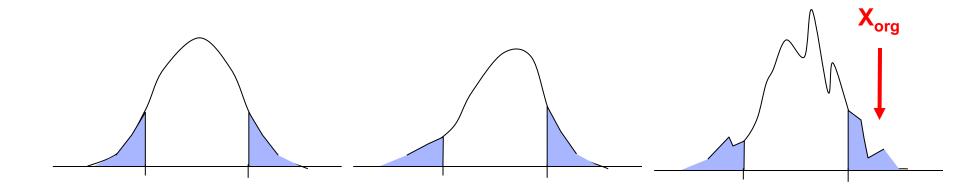
Toy example: 3rd permutation



Toy example: Nth permutation



Assess the likelihood of the *observed max cluster size* given the randomization distribution



Summary statistics

Parametric statistical test for all channel-time-frequency points

probability for H0 one H0 for each channel-time-frequency multiple comparison problem

Non-parametric approach for estimating probability

randomization or permutation probability of H0 for arbitrary statistic incorporate prior knowledge in statistic avoid MCP using max statistic

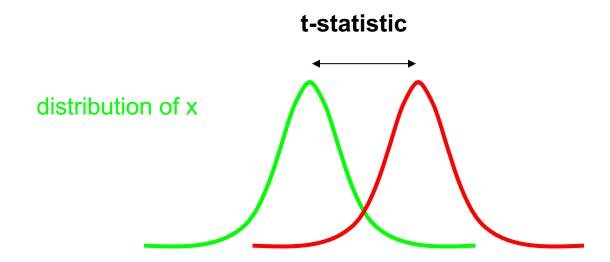
Source-level statistics

Same principles as channel-level statistics

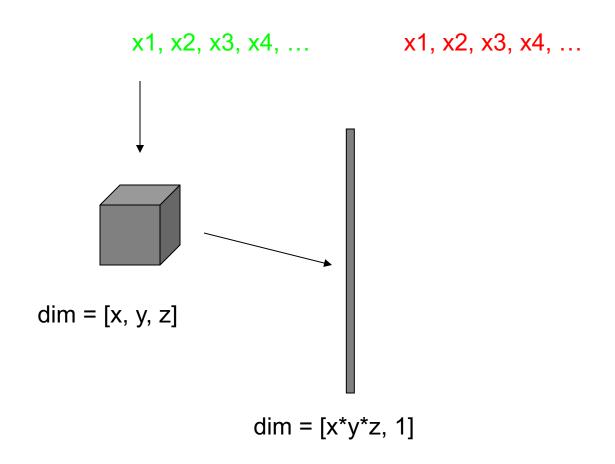
Beamforming

Swap data between conditions: use common filters

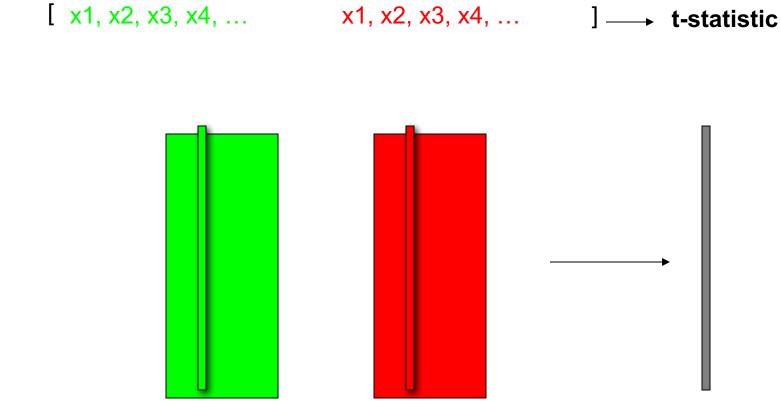
Inferential statistics: parametric



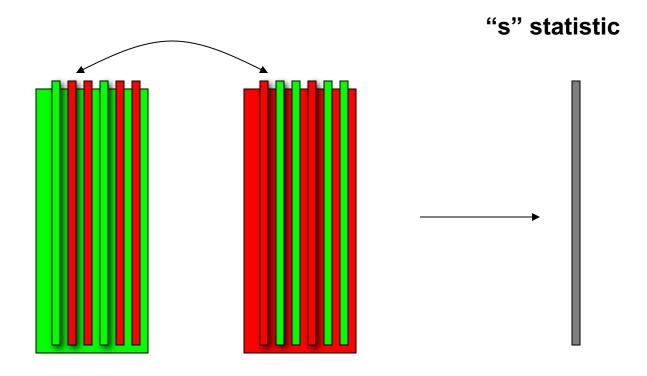
Inferential statistics: distributed data at source level



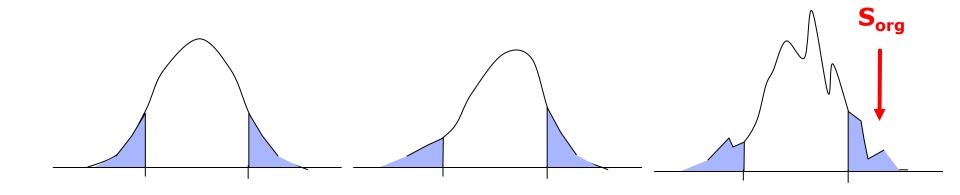
Inferential statistics: parametric



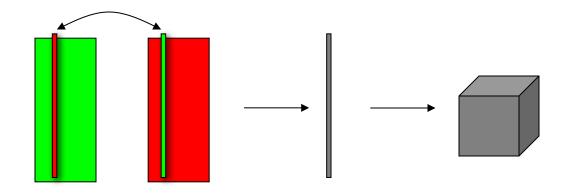
Inferential statistics: permutation approach



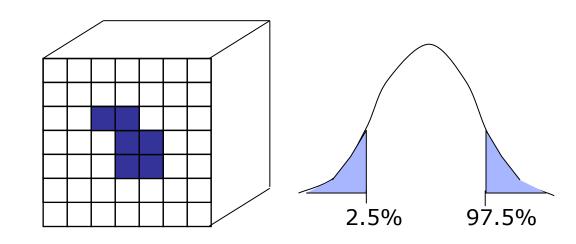
Permutation distribution of "s" can take any shape



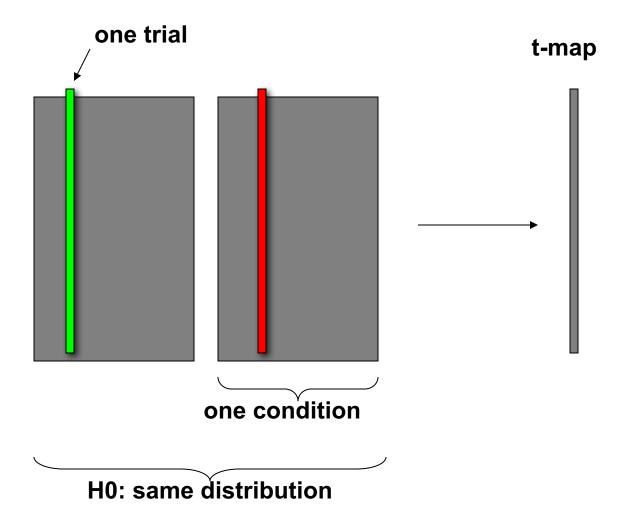
Cluster-based permutation test on source-level



a-priori threshold cluster neighbouring voxels compute sum over cluster



Returning to beamforming



Common filters for beamforming

$$\hat{X}(t) = G X(t) + N$$

$$\hat{X}(t) = W M(t) \qquad W = (G^{T} C^{-1} G)^{-1} G^{T} C^{-1}$$

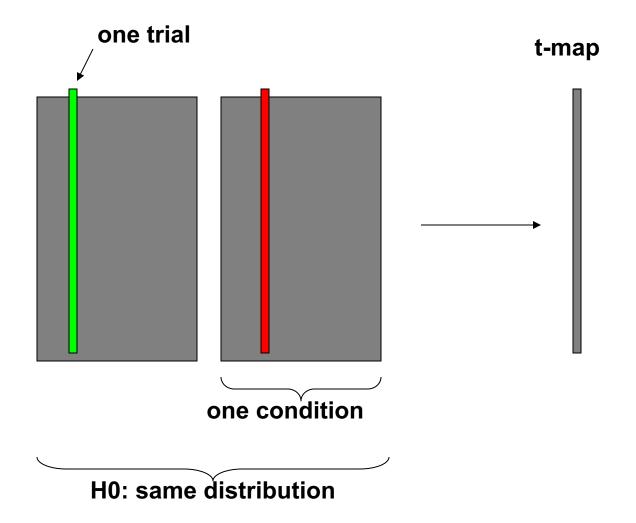
$$P = \hat{X} \hat{X}^{T} = W C W^{T} \qquad C = M M^{T}$$

$$C_{i} = M_{i} M_{i}^{T} \quad trial \ 1, \ 2, \ 3, \ ...$$

$$C = (C_{1} + C_{2} + C_{3} + ...)/n$$

$$P_{i} = W C_{i} W^{T}$$

Common filters for beamforming



Summary statistics on source-level

Same principles as for channel-level statistics

Average covariance over all data for spatial filter estimate

One spatial filter per voxel

common to both conditions

single-trial estimates: simple multiplication

Permutation test not affected

exchangeability of data over conditions does not change the optimal filter under H0 computationally fast

General summary

A formal hypothesis can be tested with randomization test control the chance of false positives reduce the false negative rate

Multiple comparison problem

one hypothesis per channel-time-frequency
one hypothesis for all data

Increase sensitivity

using clusters to capture the structure in the data