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M/EEG	signal	characteristics	considered	during	analysis

timecourse of	activity	
->	ERP

spectral	characteristics	
->	power	spectrum

temporal	changes	in	power	
->	time-frequency	response	(TFR)

spatial	distribution	of	activity	over	the	head	
->	source	reconstruction
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Superposition	of	source	activity
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Separating	activity	of	different	sources	(and	noise)

Use	the	temporal	aspects	of	the	data	
at	the	channel	level	
ERF	latencies
ERF	difference	waves
Filtering	the	time-series
Spectral	decomposition

Use	the	spatial	aspects	of	the	data
Volume	conduction	model	of	head
Estimate	source	model	parameters
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Brain	signals	contain	oscillatory	activity
at	multiple	frequencies

Cohen,	1972

Hoogenboom	et	al,	2006
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Outline

Spectral	analysis:	going	from	time	to	frequency	domain

Issues	with	finite	and	discrete	sampling

Spectral	leakage	and	(multi-)tapering

Time-frequency	analysis
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A	background	note	on	oscillations

period
amplitude

phase
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Spectral	analysis	

Deconstructing	a	time	domain	signal	into	its	constituent	
oscillatory	components,	a.k.a.	Fourier	analysis

Using	simple	oscillatory	functions:	cosines	and	sines
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Spectral	decomposition:	the	principle
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Spectral	decomposition:	the	power	spectrum
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Deconstructing	a	time	domain	signal	into	its	constituent	
oscillatory	components,	a.k.a.	Fourier	analysis

Using	simple	oscillatory	functions:	cosines	and	sines
Express	signal	as	function	of	frequency,	rather	than	time

Concept:	linear	regression	using	oscillatory	basis	functions

Spectral	analysis
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Spectral	analysis	~	GLM

Y =	b *	X
X			set	of	basis	functions
bi contribution	of	basis	function	i to	the	data.
b for	cosine	and	sine	components	for	a	given	frequency	

map	onto	amplitude	and	phase	estimate.	

Restriction:	basis	functions	should	be	‘orthogonal’

Consequence	1:	frequencies	not	arbitrary	
->	integer	amount	of	cycles	should	fit	into	N	points.

Consequence	2:	N-point	signal	
->	N	basis	functions

bcos

bsin
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Time-frequency	relation

Consequence	1:	frequencies	not	arbitrary	
->	integer	amount	of	cycles	should	fit	into	N	samples	of	Dt	each.

The	frequency	resolution	is	determined	by	the	total	length	of	
the	data	segments	(N	* Dt	=	T)

Rayleigh	frequency	=	1/T	=	Df	=	frequency	resolution

Time	window:

0.2	s

Frequencies:

(0)	5	10	15	20	..	Hz

Time	window:

1	s

Frequencies:

(0)	1	2	3	4	5	6	..	Hz
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Time-frequency	relation

Consequence	2:	N-point	signal	
->	N	basis	functions

N	basis	functions	->	N/2	frequencies
The	highest	frequency	that	can	be	resolved	depends	

on	the	sampling	frequency	F
Nyquist	frequency	=	F/2

Sampling	freq	400	Hz

Time	window	0.25	s

Frequencies:

(0)	4	8...	196	200	Hz

Sampling	freq	1	kHz	

Time	window	1	s

Frequencies:

(0)	1	2	…	499	500	Hz
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Deconstructing	a	time	domain	signal	into	its	constituent	
oscillatory	components,	a.k.a.	Fourier	analysis

Using	simple	oscillatory	functions:	cosines	and	sines
Express	signal	as	function	of	frequency,	rather	than	time

Concept:	linear	regression	using	oscillatory	basis	functions
Each	oscillatory	component	has	an	amplitude	and	phase
Discrete	and	finite	sampling	constrains	the	frequency	axis

Spectral	analysis
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Goal	and	challenges
• Estimate	the	true	oscillations	from	the	observed	data
• Limited	time	available	for	Fourier	transform
• You	are	looking	at	the	activity	through	

a	time	restricted	window
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Goal	and	challenges
• Estimate	the	true	oscillations	from	the	observed	data
• Limited	time	available	for	Fourier	transform
• You	are	looking	at	the	activity	through	

a	time	restricted	window

• This	implicitly	means	that	the	data	
are	‘tapered’ with	a	boxcar

• Furthermore,	data	are	discretely	
sampled
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• True	oscillations	in	data	at	frequencies	not	sampled	with	
Fourier	transform	spread	their	energy	to	the	sampled	
frequencies

• Not	tapering	is	equal	to	applying	a	“boxcar”	taper
• Each	type	of	taper	has	a	specific	leakage	profile			

Spectral	leakage	and	tapering

0

1
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Spectral	leakage

sidelobesmain	lobe
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Tapering	in	spectral	analysis
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Tapering	in	spectral	analysis
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Tapering	in	spectral	analysis
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• True	oscillations	in	data	at	frequencies	not	sampled	with	
Fourier	transform	spread	their	energy	to	the	sampled	
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Spectral	leakage	and	tapering
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Multitapers

Make	use	of	more	than	one	taper	and	combine	
their	properties

Used	for	smoothing	in	the	frequency	domain

Instead	of	“smoothing” one	can	also	say	“controlled	leakage”
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broadband	activity	between	
60-90	Hz

Hanning	window

2	Hz	smoothing	(7	
tapers)

5	Hz	smoothing	
(19	tapers)

10	Hz	smoothing	
(39	tapers)

2	s

Multitapered	spectral	analysis

Mitra	&	Pesaran,	1999,	Biophys	J
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Multitapered	spectral	analysis
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Multitapers

Multitapers	are	useful	for	reliable	estimation	of	high	
frequency	components

Low	frequency	components	are	better	estimated	using	a	
single	(Hanning)	taper

%estimate low frequencies

cfg  = [];
cfg.method = ‘mtmfft’;
cfg.foilim = [1 30];
cfg.taper  = ‘hanning’;

.

.

.
freq=ft_freqanalysis(cfg, data);

%estimate high frequencies

cfg  = [];
cfg.method    = ‘mtmfft’;
cfg.foilim    = [30 120];
cfg.taper     = ‘dpss’;
cfg.tapsmofrq = 8;

.

.
freq=ft_freqanalysis(cfg, data);
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Interim	summary

Spectral	analysis	
Decompose	signal	into	its	constituent	
oscillatory	components

Focused	on	‘stationary’ power

Tapers
Boxcar,	Hanning,	Gaussian

Multitapers
Control	spectral	leakage/smoothing
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Time-frequency	analysis

cfg  = [];
cfg.method = ‘…’;

.

.

.
freq = ft_freqanalysis(cfg, data);

‘mtmconvol’;

Typically,	brain	signals	are	not	‘stationary’
• Divide	the	measured	signal	in	shorter	time	segments	

and	apply	Fourier	analysis	to	each	signal	segment
• Everything	we	saw	so	far	with	respect	to	frequency	

resolution	applies	here	as	well
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Time	frequency	analysis

Time	(s)
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Time	frequency	analysis
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Time	frequency	analysis
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Evoked	versus	induced	activity
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Noisy	signal	->	many	trials	needed
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The	time-frequency	plane
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•cfg = [];
•cfg.method = ‘mtmconvol’;
•cfg.foi    = [2 4 … 40];
•cfg.toi    = [0:0.050:1.0];
•cfg.t_ftimwin = [0.5 0.5 … 0.5];

.

.

. 
freq = ft_freqanalysis(cfg,data);
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The	time-frequency	plane

The	division	is	‘up	to	you’
Depends	on	the	phenomenon	

you	want	to	investigate:
- Which	frequency	band?
- Which	time	scale?

cfg = [];
cfg.method    = ‘mtmconvol’;
cfg.foi       = [2 4 … 40];
cfg.toi       = [0:0.050:1.0];
cfg.t_ftimwin = [0.5 0.5 … 0.5];
cfg.tapsmofrq = [ 4   4  …  4 ];

.

. 
freq = ft_freqanalysis(cfg,data);
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Time	versus	frequency	resolution

short	timewindow long	timewindow
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Interim	summary

Time	frequency	analysis
Fourier	analysis	on	shorter	sliding	time	window

Evoked	&	Induced	activity
Time	frequency	resolution	trade	off
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Wavelet	analysis

Popular	method	to	calculate	time-frequency	
representations

Is	based	on	convolution	of	signal	with	a	family	of	
‘wavelets’ which	capture	different	frequency	
components	in	the	signal

Convolution	~	local	correlation	
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cfg  = [];
cfg.method = ‘…’;

.

.

.
freq=ft_freqanalysis(cfg, data);

‘wavelet’;

Wavelet	analysis
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Wavelets

Taper

Sine	wave

Cosine	wave
X

=

=
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Wavelet	analysis

Wavelet	width	determines	the	
time-frequency	resolution

Width	is	a	function	of	frequency	
(often	5	cycles)

‘Long’ wavelet	at	low	frequencies	
leads	to	relatively	narrow	
frequency	resolution	but	poor	
temporal	resolution

‘Short’ wavelet	at	high	frequencies	
leads	to	broad	frequency	
resolution	but	more	accurate	
temporal	resolution
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Wavelet	analysis

Similar	to	Fourier	analysis,	but
Can	be	computationally	slower
Tiles	the	time	frequency	plane	in	a	particular	way	

with	fewer	degrees	of	freedom

%time frequency analysis with
%multitapers

cfg  = [];
cfg.method    = ‘mtmconvol’;
cfg.toi       = [0:0.05:1];
cfg.foi       = [ 4   8  …  80];
cfg.t_ftimwin = [0.5 0.5 … 0.5];
cfg.tapsmofrq = [ 2   2  …  10];

.

.
freq=ft_freqanalysis(cfg, data);

%time frequency analysis with
%wavelets

cfg  = [];
cfg.method = ‘wavelet’;
cfg.toi    = [0:0.05:1];
cfg.foi    = [4 8 … 80];
cfg.width  = 5;

.

.

.
freq=ft_freqanalysis(cfg, data);
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Summary

Spectral	analysis
Relation	between	time	and	frequency	domains
Tapers

Time	frequency	analysis
Time	vs	frequency	resolution

Wavelets

After	the	coffee	break:	hands-on
Time-frequency	analysis

Different	methods

Parameter	tweaking

Power	versus	baseline

Visualization
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