

Adapted from talk at:
Biomag satellite symposium:
"From zero to hero"

Connectivity analysis: the basics

Jan-Mathijs Schoffelen, MD PhD

Donders Institute, Nijmegen, NL j.schoffelen@donders.ru.nl

Connectivity analysis: goal

Connectivity analysis: goal

Connectivity analysis: goal

$$C = f(s_1, s_2, ..., s_k)$$

 $C = f(s_i, s_i)$

Connectivity analysis: practice

Connectivity analysis: practice

$$C = f(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k)$$

Connectivity analysis: challenge

$$X = [x_1 \ x_2 \ ... \ x_n]^T = l_1 s_1^T + N$$

Connectivity analysis: challenge

$$X = l_1 s_1^T + l_2 s_2^T + ... + l_k s_k^T + N$$

Connectivity analysis: challenge

This talk

$$C = f(y_i, y_j)$$

- Choice of *f*
- Choice of y_i and y_j
- What to keep in mind when interpreting C

This talk

$$C = f(y_i, y_j)$$

- Choice of f
- Choice of y_i and y_j
- What to keep in mind when interpreting C

Connectivity metrics

- Many a metric on the market
- Functional versus effective connectivity
- Time domain versus frequency domain
- Frequency domain: using amplitude information versus using phase (+amplitude) information

Spectrally-resolved C-metrics

amplitude/power (envelope) correlation

phase difference consistency measures

spectrally-resolved Granger causality

cross-frequency interactions (not discussed today)

Amplitude/power (envelope) correlation

Phase difference consistency measures

Phase difference consistency measures

- Coherence
- Phase locking value
- Imaginary part of coherency
- Phase slope index
- Phase lag index
- Weighted phase lag index

Coherence

$$x_1x_2^* = A_1e^{i\phi_1} \cdot A_2e^{-i\phi_2} = A_1A_2e^{i(\phi_1-\phi_2)}$$

Coherence & co

Coherence =
$$\frac{1/N \sum A_1 A_2 e^{i(\phi_1 - \phi_2)}}{\sqrt{(1/N \sum A_1^2)(1/N \sum A_2^2)}}$$
PLV =
$$\frac{1/N \sum 1 \times 1 \times e^{i(\phi_1 - \phi_2)}}{\sqrt{(1/N \sum 1^2)(1/N \sum 1^2)}}$$

Coherence & co

Coherency =
$$\frac{1/N \sum A_1 A_2 e^{i(\phi_1 - \phi_2)}}{\sqrt{(1/N \sum A_1^2)(1/N \sum A_2^2)}} = \frac{1/N \sum A_2 e^{i(\phi_1 - \phi_2)}}{\sqrt{(1/N \sum A_1^2)(1/N \sum A_2^2)}}$$

Predicting the future the concept of Granger causality

Predicting the future the concept of Granger causality

$$X(t) = \sum_{\tau} \beta_{\tau} X(t-\tau) + \eta$$

$$X(t) = \sum \beta_{\tau 1} X(t-\tau) + \eta_1$$

$$Y(t) = \sum_{\tau} \beta_{\tau 2} Y(t-\tau) + \eta_2$$

$$\begin{aligned} &\mathsf{X}(\mathsf{t}) = \sum \; \beta_{\tau 1} \mathsf{X}(\mathsf{t}\text{-}\tau) + \eta_1 \\ &\mathsf{Y}(\mathsf{t}) = \sum \; \beta_{\tau 2} \mathsf{Y}(\mathsf{t}\text{-}\tau) + \eta_2 \\ &\mathsf{X}(\mathsf{t}) = \sum \; \beta_{\tau 11} \mathsf{X}(\mathsf{t}\text{-}\tau) + \sum \; \beta_{\tau 21} \mathsf{Y}(\mathsf{t}\text{-}\tau) + \epsilon_1 \\ &\mathsf{Y}(\mathsf{t}) = \sum \; \beta_{\tau 12} \mathsf{X}(\mathsf{t}\text{-}\tau) + \sum \; \beta_{\tau 22} \mathsf{Y}(\mathsf{t}\text{-}\tau) + \epsilon_2 \end{aligned}$$

$$\begin{aligned} &\mathsf{X}(\mathsf{t}) = \sum \; \beta_{\tau 1} \mathsf{X}(\mathsf{t}\text{-}\tau) + \eta_1 \\ &\mathsf{Y}(\mathsf{t}) = \sum \; \beta_{\tau 2} \mathsf{Y}(\mathsf{t}\text{-}\tau) + \eta_2 \\ &\mathsf{X}(\mathsf{t}) = \sum \; \beta_{\tau 11} \mathsf{X}(\mathsf{t}\text{-}\tau) + \sum \; \beta_{\tau 21} \mathsf{Y}(\mathsf{t}\text{-}\tau) + \epsilon_1 \\ &\mathsf{Y}(\mathsf{t}) = \sum \; \beta_{\tau 12} \mathsf{X}(\mathsf{t}\text{-}\tau) + \sum \; \beta_{\tau 22} \mathsf{Y}(\mathsf{t}\text{-}\tau) + \epsilon_2 \end{aligned}$$

$$X(t) = \sum \beta_{\tau_1} X(t-\tau) + \eta_1$$

$$Y(t) = \sum \beta_{\tau_2} Y(t-\tau) + \eta_2$$

$$X(t) = \sum \beta_{\tau_{11}} X(t-\tau) + \sum \beta_{\tau_{21}} Y(t-\tau) + \varepsilon_1$$

$$Y(t) = \sum \beta_{\tau_{12}} X(t-\tau) + \sum \beta_{\tau_{22}} Y(t-\tau) + \varepsilon_2$$

$$F_{Y \to X} = In\left(\frac{var(\eta_1)}{var(\varepsilon_1)}\right)$$

$$F_{X \to Y} = In\left(\frac{var(\eta_2)}{var(\varepsilon_2)}\right)$$

- Fourier transformation of autoregressive coefficients gives spectral transfer matrix
- Spectrally-resolved Granger causality
- Partial directed coherence
- Directed transfer function

This talk

$$C = f(y_i, y_j)$$

- Choice of *f*
- Choice of y_i and y_j
- What to keep in mind when interpreting C

Which signals to compare?

Sensor level signals

Source level signals

Sensor-level connectivity: bad idea

- Phase Slope Index

WPLI suggests fronto-occipital directed interaction (alpha band)

Source-level connectivity: better idea

Note: there will still be signal leakage

Source-level connectivity: where to look?

Source-level connectivity: seed-based approach

Source-level connectivity: all-to-all approach

This talk

$$C = f(y_i, y_j)$$

- Choice of *f*
- Choice of y_i and y_j
- What to keep in mind when interpreting C

Interpretation: comparison

- Account for 'spuriosity' in the estimates
- Across groups of participants
- Across experimental conditions
- Against surrogate data

Interpretation

Interpretation

Summary

• Choice of *f*:

Many C-metrics to choose from.

- Choice of y_i and y_j :
 - Do connectivity analysis at the source level.
- What to keep in mind when interpreting C:
 - Be careful with interpretation: SNR confound

Thanks for listening

Remedial C-metrics

Im(coherency) ≠ 0