

Forward and inverse modelling of EEG and MEG

Robert Oostenveld

Donders Institute, Radboud University, Nijmegen, NL NatMEG, Karolinska Institute, Stockholm, SE

r.oostenveld@donders.ru.nl

Overview

Motivation and background Forward modeling

Source model

Volume conductor model

Inverse modeling - general

Single and multiple dipole fitting

Distributed source models

Beamforming methods

Inverse modeling - independent components Summary

Overview

Motivation and background

Forward modeling

Source model

Volume conductor model

Inverse modeling - general

Single and multiple dipole fitting

Distributed source models

Beamforming methods

Inverse modeling - independent components Summary

Motivation 1

Strong points of EEG and MEG

Temporal resolution (~1 ms)

Characterize individual components of ERP

Oscillatory activity

Disentangle dynamics of cortical networks

Weak points of EEG and MEG

Measurement on outside of brain

Overlap of components

Low spatial resolution

Motivation 2

If you find a ERP/ERF component, you want to characterize it in physiological terms

Time or frequency are the "natural" characteristics

"Location" requires interpretation of the scalp topography

Forward and inverse modeling helps to interpret the topography

Forward and inverse modeling helps to disentangle overlapping source timeseries

Superposition of source activity

Superposition of source activity

Varying "visibility" of each source to each channel

Timecourse of each source contributes to each channel

The contribution of each source depends on its "visibility"

Activity on each channel is a superposition of all source activity

Biophysical source modelling: overview

Overview

Motivation and background

Forward modeling

Source model

Volume conductor model

Inverse modeling - general

Single and multiple dipole fitting

Distributed source models

Beamforming methods

Inverse modeling - independent components Summary

What produces the electric current

Equivalent current dipoles

Overview

Motivation and background Forward modeling

Source model

Volume conductor model

Inverse modeling - general

Single and multiple dipole fitting

Distributed source models

Beamforming methods

Inverse modeling - independent components Summary

Volume conductor

described electrical properties of tissue

describes geometrical model of the head

describes **how** the currents flow, not where they originate from

same volume conductor for EEG as for MEG, but also tDCS, tACS, TMS, ...

Volume conductor

Computational methods for volume conduction problem that allow for realistic geometries

BEM Boundary Element Method

FEM Finite Element Method

FDM Finite Difference Method

Volume conductor: Boundary Element Method

Each compartment is

homogenous isotropic

Important tissues

skin

skull

brain

(CSF)

Triangulated surfaces describe boundaries

Volume conductor: Boundary Element Method

Construction of geometry
segmentation in different tissue types
extract surface description
downsample to reasonable number of triangles

Volume conductor: Boundary Element Method

Construction of geometry

segmentation in different tissue types extract surface description downsample to reasonable number of triangles

Computation of model

independent of source model only one lengthy computation fast during application to real data

Can (almost) be arbitrary complex

Volume conductor: Finite Element Method

Tesselation of 3D volume in tetraeders or hexaheders

Volume conductor: Finite Element Method

Volume conductor: Finite Difference Method

Volume conductor: Finite Difference Method

$$I_1 + I_2 + I_3 + I_4 = 0$$
 $V = I*R$

$$\Delta V_1/R_1 + \Delta V_2/R_2 + \Delta V_3/R_3 + \Delta V_4/R_4 = 0$$

$$(V_1-V_0)/R_1 + (V_2-V_0)/R_2 + (V_3-V_0)/R_3 + (V_4-V_0)/R_4 = 0$$

Volume conductor: Finite Difference Method

Unknown potential Vi at each node

Linear equation for each node

approx. 100x100x100 = 1.000.000 linear equations
just as many unknown potentials

Inject some current +I and -I at two of the nodes

Solve for unknown potential

EEG volume conduction

EEG volume conduction

Potential difference between electrodes corresponds to current flowing through skin

Only tiny fraction of current passes through skull

Therefore the model should describe the skull and skin as accurately as possible

MEG volume conduction

MEG measures magnetic field over the scalp

Practical differences between EEG and MEG

fixed sensor positions in MEG flexible cap in EEG

MEG requires head size to be known in analysis using individual anatomical MRI position of sensors is accurately known

EEG requires the electrode positions to be known in analysis

Obtaining geometrical data

3D scanning instead of MRI

3D scanning - pipeline for EEG modelling

Forward modeling – practical considerations

Most accurate source estimate using individual headmodels and electrode positions

Decent accurate source estimate with template headmodel and individual electrode positions

Reasonably accurate source estimate with template BEM headmodel and template electrodes

Least accurate source estimate with spherical model and template electrodes

Overview

Motivation and background Forward modeling

Source model

Volume conductor model

EEG versus MEG

Inverse modeling - general

Single and multiple dipole fitting

Distributed source models

Beamforming methods

Inverse modeling - independent components Summary

Biophysical source modelling: overview

Inverse methods

Single and multiple dipole models

Minimize error between model and measured potential/field

Distributed source models

Perfect fit of model to the measured potential/field Additional constraint on source smoothness, power or amplitude

Spatial filtering

Scan the whole brain with a single dipole and compute the filter output at every location

Beamforming (e.g. LCMV, SAM, DICS)

Multiple Signal Classification (MUSIC)

Overview

Motivation and background Forward modeling

Source model

Volume conductor model

Inverse modeling - general

Single and multiple dipole fitting

Distributed source models

Beamforming methods

Inverse modeling - independent components Summary

Single or multiple dipole models - Parameter estimation

Parameter estimation: dipole parameters

source model with few parameters position orientation

strength

compute the model data

minimize difference between actual and model data

Non-linear parameters: grid search

- One dimension, e.g. location along medial-lateral 100 possible locations
- Two dimensions, e.g. med-lat + inf-sup $100 \times 100 = 10.000$
- Three dimensions $100 \times 100 \times 100 = 1.000.000 = 10^6$
- Two dipoles, each with three dimensions $100 \times 100 \times 100 \times 100 \times 100 \times 100 = 10^{12}$

Optimization of non-linear parameters

$$\varepsilon rror(x, y, z) = \sum_{i=1}^{N} (Y_i(x, y, z) - V_i)^2 \Longrightarrow \min_{x, y, z} (\varepsilon rror(x, y, z))$$

Single or multiple dipole models - Strategies

Single dipole:

scan the whole brain, followed by iterative optimization

Two dipoles:

scan with symmetric pair, use that as starting point for iterative optimization

More dipoles:

sequential dipole fitting

Sequential dipole fitting for ERPs

Assume that activity starts "small" explain earliest ERP component with single equivalent current dipole

Assume later activity to be more widespread add ECDs to explain later ERP components estimate position of new dipoles re-estimate the activity of all dipoles

Overview

Motivation and background Forward modeling

Source model

Volume conductor model

Inverse modeling - general

Single and multiple dipole fitting

Distributed source models

Beamforming methods

Inverse modeling - independent components Summary

Distributed source model

Position of the source is not estimated as such Pre-defined grid (3D volume or on cortical sheet)

Strength is estimated

In principle easy to solve, however...

More "unknowns" (parameters) than "knowns" (measurements)

Infinite number of solutions can explain the data perfectly

Additional constraints required

Distributed source model

Distributed source model

Distributed source model: linear estimation

distributed source model with **many dipoles** throughout the whole brain

estimate the strength of all dipoles

data and noise can be perfectly explained

Distributed source model: regularization

$$V = G \cdot q + Noise$$

$$\min_{q} \{ \|V - G \cdot q\|^2 \} = 0 !!$$

Regularized linear estimation:

$$\rightarrow \min_{q} \{ \| V - G \cdot q \|^2 + \lambda \cdot \| D \cdot q \|^2 \}$$

$$\text{mismatch with data} \qquad \text{mismatch with prior assumptions}$$

Overview

Motivation and background Forward modeling

Source model

Volume conductor model

Inverse modeling - general

Single and multiple dipole fitting

Distributed source models

Beamforming methods

Inverse modeling - independent components Summary

Scanning with a beamformer filter

Spatial filtering with beamforming

Position of the source is not estimated as such Manipulate filter properties, not source properties

No explicit assumptions about source constraints (implicit: single dipole)

Assumption that sources that contribute to the data should be uncorrelated

Beamformer ingredients: forward model

Beamformer: the question revisited

What is the activity of a source \mathbf{q} , at a location \mathbf{r} , given the data \mathbf{Y} ? We know how to get from source to data: $\mathbf{Y} = \mathbf{G} * \mathbf{q}$ We want to go from data to source: $\mathbf{w}^T * \mathbf{Y} = \mathbf{\hat{q}}$ \mathbf{w}^T is called a spatial filter

Beamformer: the question revisited

What is the activity of a source \mathbf{q} , at a location \mathbf{r} , given the data \mathbf{Y} ? We know how to get from source to data: $\mathbf{Y} = \mathbf{G} * \mathbf{q}$ We want to go from data to source: $\mathbf{w}^T * \mathbf{Y} = \mathbf{\hat{q}}$ \mathbf{w}^T is called a spatial filter

What would we like a spatial filter to do?

Adaptive spatial filter: minimum variance constraint

Spatial filtering with beamforming

Overview

Motivation and background Forward modeling

Source model

Volume conductor model

Inverse modeling - general

Single and multiple dipole fitting

Distributed source models

Beamforming methods

Inverse modeling - independent componentsSummary

Independent component analysis

Mixture of Brain source activity

Source modelling of independent components

ICA takes care of unmixing of timeseries Source analysis to take care of the location

Assumption: components correspond to compact spatial patches (or bilateral patches)

Use simple dipole models to model the spatial component topographies

Overview

Motivation and background Forward modeling

Source model

Volume conductor model

EEG versus MEG

Inverse modeling - general

Single and multiple dipole fitting

Distributed source models

Spatial filtering

Inverse modeling - independent components

Summary

Summary

Forward modelling

Required for the interpretation of scalp topographies Different methods with varying accuracy

Inverse modelling

Estimate 1) location and 2) timecourse

Assumptions on source locations

Single or multiple point-like source Distributed source

Assumptions on source timecourse

Uncorrelated (and dipolar) Independent

Summary 2

Independent component analysis
separates topography and timecourse
Inverse methods to interpret topography
Single or multiple point-like source
Distributed source