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Dynamic causal modelling (DCM)
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What is Dynamic Causal Modelling (DCM)?

DCM is a computational modelling technique
to estimate bio-physiologically relevant parameters
from functional neuroimaging data

- Based on a generative model expressed as differential equations

- Model parameters are estimated by fitting data features of brain activity
- Effective connectivity between brain regions

- (Synaptic coupling strengths)

-> Bayesian framework (priors, posteriors, model evidence)

What can we do with DCM?

Model B

modulation modulation -

Model comparisons Test hypotheses

Does model A explain the data better than model B?
Parameter inference What are the connection strengths?
How do they change between conditions?
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Which DCM should I use?

1) Select data feature of interest
* Event-related design: event-related potentials, induced responses
« Steady state activity: cross-spectral densities, phase coupling

2) Select type of generative model
* Physiological: convolution or conductance, several options
* Phenomenological: fixed choice

3) Specify networks - what do you want to test? (A matrix)
* What is the hypothesis?
e Which regions?
¢ Which connections?

4) Think about condition-specific effects (B matrix)

* Do you have more than 1 experimental condition?
* Which connections may show a difference between conditions?
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aj




A matrix B matrix
Z a, 0 ||z 0 0}z cllu
= +v
2 Ay Ay || 2 b, 0]|z, 0] u,
Intrinsic connections
Extrinsic input Inhibitory interneuron
C
an u;
Exogeneous input — Spiny stellate cells
b21 |\
ay; Z; Extrinsic connections Pyramidal cells
Forward b insi
= = = Extrinsic output
z, _A Backward - - o
Measured response
djyy Lateral e > 8
7
i i
ERP & CSD . . . ERP & CSD . "
Physiological models — convolution based Physiological models — conductance based
LFP model NMM model
Inhibitory cells in extragranular layers Inhibitory cells in extragranular layers
s 5 tox & e o e )
Inibitory Y ) Inibitory =G0 g eV )4 g 0, -V AT,
interneuron —» ,\‘ ::‘ (A A4 7)500) = 2 -k r interneuron Koo =V ) - g+,
7 kS 2xx, K 7
3 Spiny stellate r-- f””‘"»"“"”’ 20 =K g | f Spiny stellate
cells | By =2 -y e cells
Va ” | y ] Va 7 Va Vs
za’mida\ce\ls | 4 73 N ﬂmida‘m”s Exogenous Excitatory spiny cells in granular layers
> ——p - input .
> | Excitatory spiny cells in granular layers < CPY =g, (0, -V )+ gV (7, V) + 14T,
7 ] i 7 e gmzkf(yig(yu_,,ﬁ z,f)ig”%r '
I l(l) E E\ v R E E
I 7 y J I 7 7 l ‘
| 1 2 ‘ Current ‘ ‘ Conductance H Reversal Pot — Potential Diff ‘
Sigmoid function Synaptic kernel | T —— Excitatory pyramidal cells in extragranular layers
3 7 ] | Excitatory pyramidal cells in extragranular layers v e o e e o
o Y & Past Synaptic Potential o _P)eT ) &V, VO 4 g@ (W, —V )+ g@(F, V) 4T,
g — 2 1 =80 =N+ / £ — ks ) gy o I
: o i o T =507 0ty Vs Ear)~8) 4T _ A A
= ‘E :: nvs(ssmes anstan Py $ N N AN & =k, (rio(u =V 2P =g +T,
. 2 £ =K H S ()= 263, K, e \ \
Membrane potential Time (s) By =xg - > ‘ Time Constant H Afferent Firing ‘ ‘ No. open channels | > (V) :\gz;::rse:
9 + additional synapses for extrinsic connections 10
List of physiological models available for DCM Phenomenological models — induced responses
Convolution Region 1 ; Region 2
= 100 ? = 100
ERP - original model for ERPs - based on Jansen & Rit (1995) = %) ¢ Z 80 ( ) each source j has a power time
260 g 60
SEP - ERP model with faster dynamics to model evoked potentials i —_ 2w " course for each frequency mode n
. . . N 2 20 2 2
CMC - Canonical Microcircuit Model = 7 N—— e
separate superficial & deep pyramidal cells (Bastos et al. 2012) Time [ms] Time [ms]
LFP - ERP model with self-connection for inhibitory neurons (Moran et al. 2007)
NFM - ERP model as a neural field model (Pinotsis et al. 2012) Within source coupling  Between source coupling .
External input
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NMM - based on Morris & Lecar (1981) () p ) 5 B
MFM - includes second order statistics (population density) (Marreiros et al. 2009) & = = = =7
CMM - canonical neural mass / mean field model - four populations Within frequency COUDQ”Q ‘—y—'
NMDA - includes (voltage gated) NMDA receptors (Moran et al. 2011) RO Condition-specific effects term
a- ’
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See: Moran et al. (2013) Frontiers in Computational Neuroscience “}P “ . -
" ) . . N ) Directional cross-frequency coupling
Neural masses and fields in dynamic causal modeling Between frequency coupling
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Phenomenological models — phase coupling

¢ each source j has a phase time course
J for a particular frequency

Seconds

[Synchronization via phase coupling]
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Some technical differences between DCM types

Physiological DCMs Phenomenological DCMs

* Model source level data
* Cannot compare nr of sources
* Take specified source locations

* Model sensor level data

* Test for how many sources
* Inverse problem included

* Optimize source locations

Event-related DCMs Steady-state DCMs

¢ External stimulus modelled * Perturbation with white/pink

with Gaussian impulse noise to generate cross-spectra

* Require baseline interval

Model inversion

Specify generative forward model

Data feature (e.g. evoked responses) (with prior distributions of parameters)

Expectation-Maximization algorithm

lterative procedure: 1. Compute model response using
current set of parameters
2. Compare model response with data
3. Improve parameters, if possible

l

1. Posterior distributions of parameters p(@| y,m)

2. Model evidence p(y|m)

Bayesian model comparisons

Free energy value as approximation to model evidence

- Accuracy - complexity terms

- Most complex model does not always win

- Only possible to compare models describing same data
- Only relative values between models matter

Within subjects ‘ )
1

plym
Significant difference: Bayes factor ﬁ >20 = difference in log evidence >3

Between subjects
Fixed effects product individual model evidence values = sum log evidences
Random effects Estimates probability model given group data

Bayesian family comparisons for large numbers of models
Group models by common feature

Parameter inference

First select winning model

Within subjects
Look at (mean of) posterior estimates of model parameters

Between subjects

Fixed effects Bayesian parameter averaging - posterior means are averaged
over subjects weighted by their precision

Random effects t-test or ANOVA

Bayesian model averaging
Useful in case of different winning models between groups
Posterior means are averaged weighted by their precision and model evidence

Further reading

Model specification and statistical inference

Stephan et al. (2010) Neuroimage. Ten simple rules for dynamic causal modelling
Stephan et al. (2009) Neuroimage. Bayesian model selection for group studies
Penny et al. (2010) PLoS One. Comparing families of dynamic causal models

First DCM paper & more details inversion algorithm
Friston et al. (2003) Neuroimage. Dynamic causal modelling

Overview of different physiological models available for DCM
Moran et al. (2013) Front Comp Neurosci. Neural masses and fields in DCM

Applications

ERP: David et al. (2006) Neuroimage; Garrido et al. (2007) PNAS; Boly et al. (2011) Science
CSD: Moran et al. (2009) Neuroimage, (2011) PLoS One; Friston et al. (2012) Neuroimage
IND: Chen et al. (2008, 2009) Neuroimage; Van Wijk et al. (2012) Neuroimage

PHA: Penny et al. (2009) J Neuroscience Methods

More documentation can be found in the SPM manual and online videos
http://www.fil.ion.ucl.ac.uk/spm/




