

Dynamic causal modelling (DCM)

MEG UK 2015 Workshop

Bernadette van Wijk Wellcome Trust Centre for Neuroimaging University College London

What is Dynamic Causal Modelling (DCM)?

DCM is a computational modelling technique to estimate bio-physiologically relevant parameters from functional neuroimaging data

- ightarrow Based on a generative model expressed as differential equations
- → Model parameters are estimated by fitting data features of brain activity
- → Effective connectivity between brain regions
- → (Synaptic coupling strengths)
- → Bayesian framework (priors, posteriors, model evidence)

2

What can we do with DCM? Model A driving input modulation Model comparisons Test hypotheses Does model A explain the data better than model B? Parameter inference What are the connection strengths? How do they change between conditions?

UCL Which DCM should I use? Select data feature of interest • Event-related design: event-related potentials, induced responses • Steady state activity: cross-spectral densities, phase coupling 2) Select type of generative model • Physiological: convolution or conductance, several options • Phenomenological: fixed choice Specify networks - what do you want to test? (A matrix) • What is the hypothesis? · Which regions? · Which connections? Think about condition-specific effects (B matrix) • Do you have more than 1 experimental condition? • Which connections may show a difference between conditions?

List of physiological models available for DCM Convolution ERP - original model for ERPs - based on Jansen & Rit (1995) SEP - ERP model with faster dynamics to model evoked potentials CMC - Canonical Microcircuit Model separate superficial & deep pyramidal cells (Bastos et al. 2012) LFP - ERP model with self-connection for inhibitory neurons (Moran et al. 2007) NFM - ERP model as a neural field model (Pinotsis et al. 2012) Conductance NMM - based on Morris & Lecar (1981) MFM - includes second order statistics (population density) (Marreiros et al. 2009) CMM - canonical neural mass / mean field model - four populations NMDA - includes (voltage gated) NMDA receptors (Moran et al. 2011) See: Moran et al. (2013) Frontiers in Computational Neuroscience "Neural masses and fields in dynamic causal modeling"

Phenomenological models - phase coupling

each source j has a phase time course for a particular frequency

Synchronization via phase coupling

$$\dot{\phi_i} = f_i - \sum_j a_{ij} \sin(\phi_i - \phi_j)$$
 In-phase coupling

$$\dot{\phi_i} = f_i - \sum_K \sum_j a_{ijK} \sin(K[\phi_i - \phi_j]) - \sum_K \sum_j b_{ijK} \cos(K[\phi_i - \phi_j])$$

Some technical differences between DCM types

Physiological DCMs

- · Model sensor level data
- Test for how many sources
- Inverse problem included
- · Optimize source locations

Phenomenological DCMs

- Model source level data
- Cannot compare nr of sources
- Take specified source locations

Event-related DCMs

- External stimulus modelled with Gaussian impulse
- Require baseline interval

Steady-state DCMs

 Perturbation with white/pink noise to generate cross-spectra

Model inversion

Data feature (e.g. evoked responses)

Specify generative forward model (with prior distributions of parameters)

Expectation-Maximization algorithm

- <u>Iterative procedure:</u> 1. Compute model response using current set of parameters
 - 2 Compare model response with data
 - 3. Improve parameters, if possible

1. Posterior distributions of parameters $p(\theta | y, m)$

 $p(y \mid m)$

2. Model evidence

15

Bayesian model comparisons

Free energy value as approximation to model evidence

- ightarrow Accuracy complexity terms
- → Most complex model does not always win
- → Only possible to compare models describing same data
- → Only relative values between models matter

Significant difference: Bayes factor $\frac{p(y|m_1)}{p(y|m_2)}$ >20 = difference in log evidence >3

Between subjects

Fixed effects product individual model evidence values = sum log evidences

Bayesian family comparisons for large numbers of models

Group models by common feature

16

Parameter inference

First select winning model

Within subjects

Look at (mean of) posterior estimates of model parameters

Between subjects

Fixed effects Bayesian parameter averaging - posterior means are averaged

over subjects weighted by their precision

Random effects t-test or ANOVA

Bayesian model averaging

Useful in case of different winning models between groups

Posterior means are averaged weighted by their precision and model evidence

Further reading

Model specification and statistical inference

Stephan et al. (2010) Neuroimage. Ten simple rules for dynamic causal modelling Stephan et al. (2009) Neuroimage. Bayesian model selection for group studies $Penny\ et\ al.\ (2010)\ PLoS\ One.\ \textit{Comparing families of dynamic causal models}$

First DCM paper & more details inversion algorithm

Friston et al. (2003) Neuroimage. Dynamic causal modelling

Overview of different physiological models available for DCM

Moran et al. (2013) Front Comp Neurosci, Neural masses and fields in DCM

Applications

17

ERP: David et al. (2006) Neuroimage; Garrido et al. (2007) PNAS; Boly et al. (2011) Science CSD: Moran et al. (2009) Neuroimage, (2011) PLoS One; Friston et al. (2012) Neuroimage IND: Chen et al. (2008, 2009) Neuroimage; Van Wijk et al. (2012) Neuroimage PHA: Penny et al. (2009) J Neuroscience Methods

More documentation can be found in the SPM manual and online videos

http://www.fil.ion.ucl.ac.uk/spm/

18